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“1+1 = 3
for large enough

values of 1.”
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On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the

machine wrong figures, will the right answers come out?” ... I am not able

rightly to apprehend the kind of confusion of ideas that could provoke such a

question. — Charles Babbage Passages from the Life of a Philosopher, p. 67.
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Preface: Is Computation Important?
A simple computational error can cause very serious problems.

The Mars Climate Orbiter Crash
Two teams used different units of measure when writing the Orbiter’s software:
NASA used the metric system, and Lockheed Martin used the Imperial system.
Read NASA’s Mars Climate Orbiter page.

The Ariane 5 Explosion
The European Space Agency’s Ariane 5 rocket exploded 37 seconds after
takeoff; the explosion was caused by an integer overflow in the software used
for launching the rocket. Watch the launch video.

The Gulf War Dhahran “Scud” Missile Attack
The Patriot missile software measured time in binary and decimal based on the
system clock that used 10th’s of a second, a non-terminating fraction in binary.
After running for over 100 hours, the system was inaccurate. Twenty-eight
U.S. soldiers died when the system failed to track a Scud missile fired from
Iraq. Read Michael Barr’s “Lethal Software Defects: Patriot Missile Failure.”
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Preface: Three Factors of Computation
There are three aspects to keep in mind while studying computation. The
first two are always in tension with each other:

Accuracy versus Efficiency

Accuracy concerns how much error occurs
and how to control the error.

Efficiency concerns how much computation
is needed to produce a result.

Accuracy Efficiency

Error
Balance

Stability is the third aspect to always keep in mind. In a stable
computation, a small change in inputs produces only a small change in
outputs. As a counterpoint, investigate instability in a “Lorenz attractor.”

Starting at [1,1,1]. Starting at [−1,−2,−3].
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Preface: A Computational Mathematics Course

This slide deck was developed while teaching Appalachian State’s MAT 2310,
Computational Mathematics (3 cr). The course was designed to introduce nu-
merical analysis and give students experience with basic programming structures
in a mathematical environment. A sample syllabus is as follows:

1. Computer Arithmetic . . . . . . 2 weeks

2. Control Structures . . . . . . . . .2 weeks

3. Numerical Differentiation . . 3 weeks

Midterm Exam

4. Root-Finding Algorithms . . .3 weeks

5. Numerical Integration . . . . . 2 weeks

6. Polynomial Interpolation . . . 2 weeks

Team Project Posters . . . . . .1 week

Final Exam

Programming was done with the computer algebra system Maple, to easily
adjust precision, and with Python. The Special Topics and Case Study come
in as time allows. A selection of group projects appears at the end of this Outline.

Thanks go to the students of MAT 2310 who lived through the development of
both a new course and these slides. Many thanks also go to my colleagues Greg
Rhoads, René Salinas, and Eric Marland who co-designed the course and gave
great feedback during the adventure.

— WmCB, Aug 2022



ICM 1 – 201

I. Computer Arithmetic

Sections

1. Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Converting to Different Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Floating Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. IEEE-754 Floating Point Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Maple’s Floating Point Representation . . . . . . . . . . . . . . . . . . . . . . . . . 18

6. Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

DOI: 10.1201/9781003299257-1



ICM 2 – 201

I. Computer Arithmetic: Scientific Notation

Definitions of Scientific Notation
Normalized: Any numeric value can be written as

d0.d1d2d3 . . .dn×10p

where 1≤ d0 ≤ 9.
Engineering: Any numeric value can be written as

n.d1d2d3 . . .dm×10q

where 1≤ n≤ 999 and q is a multiple of 3.

Examples (NIST’s Values of Constants)

• Speed of light in a vacuum: 2.99792458×108 m/s

• Newtonian constant of gravitation: 6.67384×10−11 m3/(kg · s2)

• Avogadro’s number: 6.022141×10−23 mol−1

• Mass of a proton: 1.672621777×10−27 kg

• Astronomical unit: 92.95580727×106 mi
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Conversions

Basic Base Transmogrification: Integers

Binary → Decimal Decimal → Binary
(Vector version)
Think of the binary number as a
vector of 1’s and 0’s. Use a dot
product to convert to decimal.

1. x2 = 101110

2. x10 =
⟨ 1 0 1 1 1 0 ⟩·⟨ 25 24 23 22 21 20 ⟩

3. x10 = 25 +23 +22 +21

= 46

(Algebra version)
Successively compute the bits
(from right to left)

1. bit = x mod 2
then set x = ⌊x/2⌋

2. Repeat until x = 0
E.g., x10 = 46

b0 = 0; then set x = 23
b1 = 1; x = 11
b2 = 1; x = 5
b3 = 1; x = 2
b4 = 0; x = 1
b5 = 1; x = 0

Whence x2 = 101110
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Conversions

Basic Base Transmogrification: Fractions

Binary → Decimal Decimal → Binary
(Vector version)
Think of the binary number as a
vector of 1’s and 0’s. Use a dot
product to convert to decimal.

1. x2 = 0.10111

2. x10 =
⟨ 1 0 1 1 1 ⟩·⟨ 2−1 2−2 2−3 2−4 2−5 ⟩

3. x10 = 2−1 +2−3 +2−4 +2−5

= 0.71875

(Algebra version)
Successively compute the bits
(from left to right)

1. bit = ⌊2x⌋
then set x = frac(2x)

2. Repeat until x = 0 (or when

reaching maximum length)

E.g., x10 = 0.71875
b−1 = 1; then set x = 0.43750
b−2 = 0; x = 0.87500
b−3 = 1; x = 0.75000
b−4 = 1; x = 0.50000
b−5 = 1; x = 0.0 Stop

Whence x2 = 0.10111
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Conversions

Terminating Expansions?

When does a fraction’s expansion terminate?

Base 10: A decimal fraction terminates when r =
n

10p =
n

2p ·5p .

Base 2: A binary fraction terminates when r =
m
2p .

Examples

1. 1
10 = 0.110 = 0.000112

2. 1
3 = 0.310 = 0.012

3.
√

2 .
= 1.414213562373095048810

.
= 1.01101010000010011112

4. π
.
= 3.141592653589793238510

.
= 11.0010010000111111012
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Conversions

Examples (Convert a Repeating Binary Expansion)

Convert n = 0.0101101101 · · ·= 0.01012 to decimal.

1. Convert the repeating block to decimal:

1012 = 510

2. Rewrite n in “powers-of-two” notation:

n = 5 ·2−4 +5 ·2−7 +5 ·2−10 +5 ·2−13 + · · ·

3. Express n as a geometric series:

n = 5 ·2−4 ·
∞

∑
k=0

2−3k

4. And sum the series:

n = 5 ·2−4 · 1
1−2−3 =

5
14
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Binary Coded Decimal

BCD
The digits 0 to 9 can be represented with four binary bits:

x
8

x
4

x
2

x
1

For example, 9310 would be

BCD:

9︷ ︸︸ ︷
1
8

0
4

0
2

1
1

3︷ ︸︸ ︷
0
8

0
4

1
2

1
1

vs. Binary:

93︷ ︸︸ ︷
0

128
1
64

0
32

1
16

1
8

1
4

0
2

1
1

Advantages

• Eliminates some
repeating expansions

• Rounding is simpler

• Displaying values is
easier

Disadvantages

• Fewer numbers per 8
bits (100/256≈ 39%)

• Complicated arithmetic
routines

• Slower to compute

Nearly all calculators use BCD formats.
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Floating Point Numbers

Definition (Floating Point Representation)

A number x is represented (and approximated) as

x .
= σ × f ×β

e−p

where
σ : sign ±1, f : mantissa, β : base, usually 2, 10, or 16

e: biased exponent (shifted), p: exponent’s bias (shift)

The standard floating point storage format is

σ e f

Exponent Bias
The bias value is chosen to give equal ranges for positive and negative
exponents without needing a sign bit. E.g., for an exponent with

• 8 bits: 0≤ e≤ 255 = 28−1. Use p = 28/2−1 gives an exp range of

−127≤ e−127≤ 128.

• 11 bits: 0≤ e≤ 2047 = 211−1. Use p = 211/2−1 = 1023 gives

−1023≤ e−1023≤ 1024.
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Samples

Examples

1. −3.95 = (−1)1×0.1234375×221−16

So σ = 1, f = 0.1234375, β = 2, e = 21, and p = 16.

Note: (−1)1×0.1234375×221−16 =−3.950, so err = 0.

Storage format: 1 21 0.1234375

2. 11/3 = (−1)0×0.2291666667×1616384−16383

So σ = 0, f = 0.2291666667, β = 16, e = 16384, and p = 16383.

Note: (−1)0×0.2291666667×1616384−16383 = 3.6666666672,
so err = 5.3 ·10−10.

Storage format: 0 16384 0.2291666667

3. 210 = 1024 = (−1)0×0.250×1666−63

So σ = 0, f = 0.250, β = 16, e = 66, and p = 63.

Note: (−1)0×0.250×1666−63 = 1024.0, so err = 0.

Storage format: 0 66 0.2500000000
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IEEE Standard for Floating-Point Arithmetic

Definition (IEEE-754)

Normalized Floating Point Representation (Binary)

Single precision: x .
= (−1)σ × (1.+ f[23])×2e[8]−127 (32 bit)

1

31
0

30
1 1 1 1 1 0 0

23
0

22
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Double precision: x .
= (−1)σ × (1.+ f[52])×2e[11]−1023 (64 bit)

1

63
0

62
1 1 1 1 1 0 0 0 0 0

52
0

51
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32

1

31
0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Online Floating-Point Converter

Original IEEE-754-1985, 2008 revision, 2019 revision ($)
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IEEE Standard for Floating-Point Arithmetic, II

Single Precision Bit Patterns

Pattern Value

0 < e < 255 n = (−1)σ ×2e−127×1. f
normal number

f = 0 n = (−1)σ ×0.0
e = 0 all bits are zero signed zero

f ̸= 0 n = (−1)σ ×2−126×0. f
at least 1 nonzero bit subnormal number

f = 0 σ = 0 +INF plus infinity

e = 255 σ = 1 −INF minus infinity

f ̸= 0 NaN Not-a-Number
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Big and Small & Gaps

IEEE-754 Largest and Smallest Representable Numbers

Precision Digits Max Exp Smallest # Largest #

Single ≈ 9 ≈ 38.2 ≈ 1.18 ·10−38 ≈ 3.4 ·1038

Double ≈ 17 ≈ 307.95 ≈ 2.225 ·10−307 ≈ 1.798 ·10308

Gaps in the Floating Point Number Line
The size of the gap between consecutive floating point numbers gets larger as
the numbers get larger.

usable rangeusable range

0 realmax
+3.4 ·1038

−realmax
−3.4 ·1038

realmin
+1.18 ·10−38

−realmin
−1.18 ·10−38

overflowoverflow
under-
flow

under-
flow

︸ ︷︷ ︸
Each tick mark represents one floating point number.
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Machine Epsilon

Definition
The machine epsilon ε is the largest value such that

1+ ε = 1

for a given numeric implementation.

Example (Single Precision [using Java ])
wmcb:▶ cat machineEpsilon.java

class mEps {
public static void main(String[] args) {

float machEps = 1.0f;
do {
machEps /= 2.0f;

} while ((float)(1.0 + (machEps/2.0)) != 1.0);
System.out.println("Calculated machine epsilon: " + machEps);
}

}
wmcb:▶ javac machineEpsilon.java

wmcb:▶ java mEps

Calculated machine epsilon: 1.1920929E-7 =⇒ εs ≈ 1.192 ·10−7
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Machine Epsilon, II

Example (Double Precision [using Java ])
wmcb:▶ cat machineEpsilonD.java

class mEpsD {
public static void main(String[] args) {

double machEps = 1.0d;

do {
machEps /= 2.0d;

} while ((double)(1.0 + (machEps/2.0)) != 1.0);

System.out.println("Calculated machine epsilon: " + machEps);

}
}
wmcb:▶ javac machineEpsilonD.java

wmcb:▶ java mEpsD

Calculated machine epsilon: 2.220446049250313E-16 =⇒ εd ≈ 2.22 ·10−16

Single Precision Double Precision

εs ≈ 1.192 ·10−7 εd ≈ 2.22 ·10−16
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Machine Epsilon, III

Example (Using Python 3)
>>> macEps = 1.0

>>> while (1.0 + macEps) != 1.0:

macEps = macEps/2.0

>>> macEps

1.1102230246251565e-16

>>>

>>> import numpy as np

>>> macEpsL = np.longdouble(1.0)

>>> while (1.0 + macEpsL) != 1.0:

macEpsL = macEpsL/2.0

>>> macEpsL

5.42101086242752217e-20

>>>

>>> np.finfo(np.longdouble)

finfo(resolution=1.0000000000000000715e-18,

min=-1.189731495357231765e+4932, max=1.189731495357231765e+4932,

dtype=float128)

Note: Python’s float defaults to double precision.
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Large Value Floating Point Gap

Example (Double Precision [using Java ])

• Approximate the gap to the next floating point value above 1030.

wmcb:▶ cat FPGap.java

class BigGap {
public static void main(String[] args) {

float gap = 1e23f;

float n = 1e30f;

do {
gap /= 2.0;

} while ((float)(n+(gap/2.0)) != n);

System.out.println("Approximate gap: " + eps);

}
}
wmcb:▶ javac FPGap.java

wmcb:▶ java BigGap

Approximate gap: 5.0E22
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Properties

Floating Point Arithmetic Properties

Commutative: Addition is commutative:

n1 +n2 = n2 +n1

Multiplication is commutative:

n1×n2 = n2×n1

Nonassociative: Addition is not associative:

(n1 +n2)+n3 ̸= n1 +(n2 +n3)

Multiplication is not associative:

(n1×n2)×n3 ̸= n1× (n2×n3)

Nondistributive: Multiplication does not distribute over addition:

n1× (n2 +n3) ̸= (n1×n2)+(n1×n3)
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Maple’s Floating Point Representation

Maple’s Floating Point Implementation

Maximum exponent = 9223372036854775806
Minimum exponent = −9223372036854775806
Maximum “float” = 1.×109223372036854775806

Minimum “float” = 1.×10−9223372036854775806

Maximum digits = 38654705646
Maximum binary power = 4611686018427387903

Example (Maple’s Floating Point Structure)

> N := evalf(Pi, 20):
dismantle(N)

FLOAT(3): 3.1415926535897932385

INTPOS(6): 31415926535897932385

INTNEG(2): -19
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Floating Point Rounding

IEEE-754 Rounding Algorithms1

Rounding to Nearest

• Round to nearest, ties to even (default for binary floating-point)

• Round to nearest, ties to odd

• Round to nearest, ties away from zero (used by Maple and MATLAB)

Directed Roundings

• Round toward 0 — truncation

• Round toward +∞ — rounding up or ceiling: ⌈x⌉

• Round toward −∞ — rounding down or floor: ⌊x⌋

Team Project: Implement Stochastic Rounding in Maple or Python.

1 See EE Times, “Rounding Algorithms”
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Error

Defining Error

Absolute Error: The value errabs = |actual−approximate|

Relative Error: The ratio errrel =
|actual−approximate|

|actual| =
errabs

|actual|

Example (Weighty Thoughts)

A long-tailed field mouse normally weighs up to about 50 g. Suppose a
lab-tech makes an error of 2.5 g (≈ a penny) when weighing a mouse. The
relative error is

errrel =
2.5g
50g

= 5%.

A mature African bush elephant normally weighs about 6.5 tons. Suppose a
zookeeper makes an error of 50# (≈ 7-yr-old boy) weighing an elephant. The
relative error is

errrel =
50#

13000#
.
= 0.4%.
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Error Accumulates

Adding Error

Add 1+ 1
2 +

1
3 +

1
4 + · · ·+ 1

106 forward and backward with 6 digits.

Maple
Digits := 6:

N:= 106:

Sf := 0;

for i from 1 to N do

Sf := Sf +(1.0/i);

end do:

Sf;

10.7624

Sb := 0;

for j from N to 1 by -1 do

Sb:= Sb +(1.0/j);

end do:

Sb;

14.0537

The correct value of
106

∑
k=1

1
k
to 6 significant digits is 14.3927 .

relative error(S f )≈ 25.2%, relative error(Sb)≈ 2.4%

What happened?
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Error Accumulates

Subtracting Error

Solve for x: 1.22x2 +3.34x+2.28 = 0 (3-digit, 2-decimal precision)

The quadratic formula r± =
−b±

√
b2−4ac

2a
can lead to problems.

Using the formula directly:

b2 = 11.2
4ac = 11.1

√
b2−4ac = 0.32

r+,r− =−1.24,−1.50

But the exact roots are:

R± =
−167±

√
73

122
.
=−1.30,−1.44

The relative error is ≈ 5%.

“Rationalize the numerator” to eliminate a bad subtraction:

R− =
−b−

√
b2−4ac

2a
=

2c

−b+
√

b2−4ac
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More Error Accumulates

Even Worse Subtraction Error

Solve for x: 0.01x2−1.00x+0.02 = 0 (3-digit, 2-decimal precision)

Again, using the quadratic
formula directly:

4ac = 0.0008 .
= 0.00

√
b2−4ac .

= 1.00
r±

.
= 100., 0.00

But the real roots are:

R±
.
= 99.98, 0.02

The relative errors are

errrel ≈ 0.02% & 100%!

Again, “rationalize the numerator” to eliminate a bad subtraction:

R− =
−b−

√
b2−4ac

2a
=

2c

−b+
√

b2−4ac

−b−
√

b2−4ac
2a

.
= 0.00 but

2c

−b+
√

b2−4ac
.
= 0.02



ICM 24 – 201

Accuracy v. Precision

On-Target v. Grouping

Accuracy: How closely computed values agree with the true value.

Precision: How closely computed values agree with each other.

Precise but
Not Accurate

Precise and Accurate

Not Precise
but Accurate

Not Precise and Not Accurate
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Roundoff v. Truncation

Computational v. Formulaic

Roundoff: Error from floating point arithmetic (fixed number of
digits)

Truncation: Error from formula approximation (dropping terms)

Examples

• Roundoff 6
10 +

5
10 = 11

10 ⇐⇒ 1.+1. ?
= 1.

4
10 +

5
10 +

6
10 +

7
10 +

8
10 = 3⇐⇒ 0.+1.+1.+1.+1. ?

= 3.

• Truncation sin(θ) =
∞

∑
k=1

θ 2k−1

(2k−1)! ⇐⇒ sin(θ)≈ θ − 1
6 θ 3

tan(θ) =
∞

∑
k=1

(−1)n B2n4n(1−4n)
(2n)! θ 2n−1⇐⇒ tan(θ)≈ θ + 1

3 θ 3
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Landau Notation

“Big-O”

We use Landau’s notation to describe the order of terms or functions:

Big-O: If there is a constant C > 0 such that | f (x)| ≤C · |g(x)| for
all x near x0, then we say f = O(g) [that’s “ f is ‘big-O’
of g”].2

Examples

1. For x near 0, we have sin(x) = O(x) and sin(x) = x+O(x3).

2. If p(x) = 101x7−123x6 + x5−15x2 +201x−10, then
• p(x) = O(x7) as x→ ∞.

• p(x) = O(1) for x near 0.

3. As x→ ∞, is xn = O(ex) for every n ∈ N ?

4. As x→ ∞, is ln(x) = O(x1/n) for every n ∈ N ?

2Link to ▶ Further big-O info.
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Exercises, I

Problems
Scientific Notation

1. Convert several constants at
NIST to engineering notation.

Converting Bases

2. Convert to decimal: 101110,
101×210, 101.0111, 1110.001

3. Convert to binary (to 8
places): 105, 1/7, 1234.4321,
π,
√

2.

4. Express 831.22 in BCD form.

5. Write the BCD number
1001 0110 0011.1000 0101 in
decimal.

6. Investigate converting bases
by using synthetic division.

Floating Point Numbers

7. Convert 31.387510 to floating
point format with base β = 10
and bias p = 49.

8. Convert from floating point
format with base β = 2 and
bias p = 127:

1 12610 514110

9. Why is the gap between
successive values larger for
bigger numbers when using a
fixed number of digits?

10. Give an example showing that
floating point arithmetic is not
distributive (mult over add).
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Exercises, II

Problems
IEEE-754 Standard

11. Write 20/7 in single-precision
format. In double-precision.

12. Convert the single-precision #
0 10000111 0010010...0

to decimal.

13. Chart double-precision bit
patterns.

14. Describe a simple way to test
if a computation result is
either infinite or NaN.

15. What is the purpose of using
round to nearest, ties to even?

16. Explain the significance of the
machine-epsilon value.

Error

17. The US Mint specifies that
quarters weigh 5.670 g. What
is the largest acceptable
weight, if the relative error
must be no more than 0.5%?

18. Find the relative error when
adding 1+ 1

2 + · · ·+ 1
105 using

5-digit arithmetic.

19. Show that cos(x) = O(1) for x
near 0.

20. Let p be a polynomial with
n = degree(p). Find k so that

a. p(x)=O(xk) as x→ ∞.
b. p(x)=O(xk) for x≈0.



ICM 29 – 201

II. Control Structures
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II. Control Structures: Flow

Flow Control
Conditional Statements. A condition determines an action:
If the condition is true, then do an action.
If the condition is not true,3 then do a different action.

E.g.,
• If a number is even, divide it by 2. Otherwise mult by 3 & add 1.
• If error is less than 10−5, stop. If not, reapply Newton’s method.

Repeating Blocks / Loops: Repeat an action a specified number of
times (NB: Loops embed a conditional):
Count to a value doing an action each time.

E.g.,
• Add the first 20 prime numbers.
• Starting at t=0;y0=0, use Euler’s method to find y(1) when y′= t.

3Is there a difference between not true and false? See, e.g., Intuitionistic Logic at
the Stanford Encyclopedia of Philosophy.
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Types of Conditional Statements

Basic Conditional Types

Simple: IF condition THEN do action for true
IF condition THEN do action for true ELSE do action for false

Compound: IF condition1 THEN do action1
ELSE IF condition2 THEN do action2
ELSE IF condition3 THEN do action3

. . .
ELSE do actionn when all conditions are false

Example (NC 2011–2013 Tax Rate Schedule4)
IF your filing status is single;

and taxable income is
more than:

but not over: your tax is:

$0 $12,750 6% OF THE NC TAXABLE INCOME
AMOUNT ON FORM D-400

$12,750 $60,000 $765+7% OF THE AMOUNT OVER
$12,750

$60,000 . . . $4,072.50 + 7.75% OF THE AMOUNT
OVER $60,000

4In 2014, NC converted to a regressive “flat tax” currently at 5.25% (2021).
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Types of Loops

Loop Types

Counting Loops: For loops perform an action a pre-specified number of
times.

Condition Loops: While loops perform an action as long as a given
condition is true.

Examples
• For each employee, calculate their monthly pay.

• For each integer i less than n, compute the ith number in the
Fibonacci sequence.

• While the current remainder in the Euclidean algorithm is greater
than 1, calculate the next remainder.

• While the game isn’t over, process the user’s input.
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Example: Collatz Flow Chart

Collatz Function

• Start with an integer
greater than 1. If it’s
even, divide it by 2.
Otherwise, multiply it
by 3 then add 1.
Repeat until the value
reaches 1 counting the
number of steps.

A program to calculate
the number of steps
requires a loop with a
conditional inside.

XKCD: Collatz Conjecture

Collatz(n))

a#:=)n#

j):=)1#

j):=)j)+)1#

Is)a)>)1?)

Return(j))

Is)a)even?)

a#:=)a)÷)2# a#:=)3a+1#

Yes# No#

Yes#

No#
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Example: Collatz — A Loop and a Conditional

Pseudocode

We see a conditional loop in the
Collatz function’s flow chart:

There is an “if” statement inside the
loop to calculate the new term:

while (the term > 1) do
Calculate the next term
end do

If (the term is even) then
divide by 2

else

multiply by 3, then add 1
end if

Putting these together gives:
Get the first term
Set the term counter to 1
while (the term > 1) do
If (the term is even) then divide by 2
else multiply by 3, then add 1
end if

Increment the term counter
end do

Return the term counter
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Example: Euler’s Method as a Loop

Euler’s Method

The solution to a differential equation y′ = f (x,y) can be approximated
using the differential triangle. Calculate
the next point from the current point
(xk,yk) by following the tangent line for
a step ∆x = h. Then the new point is
(xk+1,yk+1) = (xk+h,yk+h ·y′(xk,yk)).

(xk, yk)

(xk+1, yk+1)

y(x)

�y=h · y0(xk)

�x=h

Implement Euler’s method as a loop:

Define the derivative function y′ = f (x,y)
Get the initial point (x0,y0)
Get the stepsize h
Determine the number of steps n = (b−a)/h
for i from 1 to n do

Compute xk+1 = xk +h and yk+1 = yk +h · y′(xk,yk)
end do

Return the collection of points {(xi,yi)}n
i=0
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Control Structures Example: Flowchart

A Common Sample Problem

1. List the squares of the
first 5 integers showing
which are even and
which are odd.

• Use a for loop to step
through the integers and
an if-then conditional
to test for even or odd.

Start

Is
k mod 2 = 

0 ?

j = 1

k = j^2

True

False

print: k is even

print: k is odd

j = j+1

Is 
  j≤5 ?

True

False

Stop
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Control Structures Examples: Diagram

Start%

End%

Loop%

j!=!1%

Statements%

j!=!j!+!1! Is!j%≤!5?!

True%

False!

Statements!

print!
k!is!odd!

k!=!j2%

print!
k!is!even!

Is!
k!mod!2!!
=!0?!

True%

False!

START% UPDATE%
STOP%
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Excel Control Structures

Conditional Statements
If: = IF(condition, true action, false action)

[Can nest up to 7 IFs: =IF(condition1, IF(condition2, . . . , . . . ), . . . )]

[But I’ve nested 12 deep without problems...]

Case: = CHOOSE(index, case 1, case 2, . . . )
[Maximum of 29 cases) (see also: LOOKUP)]

Note
Many versions of Excel include Visual Basic for Applications (VBA), a small
programming language for macros. VBA includes a standard if-then-

else/elseif-end if structure. (See the Excel Easy web tutorial.)
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Excel Control Structures

Loop Structures

For: N/A (must be programmed in VBA)

While: N/A (must be programmed in VBA)

View:

• Excel (Mac) website • Excel (Win) website
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Excel Control Structures Example
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Maple Control Structures

Conditional Statements
If: if condition then statements;

else statements;
end if

if condition 1 then statements;
elif condition 2 then statements;
else statements;
end if

Case: N/A (use piecewise or if-elif-end if)
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Maple Control Structures

Loop Structures

For: for index from start value |1 to end value
by increment |1 do

statements;
end do

for index in expression sequence do

statements;
end do

While: while condition do

statements;
end do

View:

• Maple website • Maple Online Help

(See also: the Sage, Xcas, and TI Nspire, Maxima, or Mathematica website.)
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Maple Control Structures Example
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MATLAB1 Control Structures

Conditional Statements
If: if condition; statements; else statements; end

if condition; statements; elseif condition; statements;
else statements; end

Case: switch index (Scilab uses select)
case value1
statements;

case value2
statements;

...
otherwise

statements;
end

1FreeMat, Octave, and Scilab are FOSS clones of MATLAB. Also see GDL and R.
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MATLAB/Octave / Scilab Control Structures

Loop Structures

For: for index = startvalue:increment:endvalue
statements

end

While: while condition
statements

end

View:

• MATLAB website

• Octave website

• Scilab website

• FreeMat website
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MATLAB Control Structures Example

octave-3.4.0:1>

> for j = 1:1:5;

> k = j*j;

> if mod(k,2)== 0;

> printf("%d is even\n", k);

> else

> printf("%d is odd\n", k);

> end; % of if
> end; % of for

1 is odd

4 is even

9 is odd

16 is even

25 is odd

octave-3.4.0:2>
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C/ Java Control Structures

Conditional Statements

If: if (condition) {statements}

if (condition) {statements}
else {statements}

Case: switch (index) {
case 1: statements ; break;

case 2: statements ; break;
...

case n: statements ; break;

default: statements }

(See also: Lua.)
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C/ Java Control Structures

Loop Structures

For: for (initialize; test; update ) {statements}

While: while (condition ) {statements} ← “entrance condition” loop

do {statements} while (condition ) ← “exit condition” loop

View:

• C reference card • Java reference card
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C Control Structures Example

#include <stdio.h>

main()

{ int i, j;

for (i=1; i<= 5; i++)

{ j = i*i;

if ((j % 2)==0)

printf("%d is even\n", j);

else

printf("%d is odd\n", j);

}

return 0;

}

wmcb> gcc -o cs eg cs eg.c

wmcb> ./cs eg

1 is odd

4 is even

9 is odd

16 is even

25 is odd
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Java Control Structures Example

class cs eg {
public static void main(String[] args)

{
int i, j;

for (i=1; i<= 5; i++)

{ j = i*i;

if ((j % 2)==0)

System.out.println(j+" is even");

else

System.out.println(j+" is odd");

}

}
}

wmcb> javac cs eg.java

wmcb> java cs eg

1 is odd

4 is even

9 is odd

16 is even

25 is odd
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TI-84 Control Structures

Conditional Statements
If: If condition: statement

If condition
Then

statements
Else

statements
End

Case: N/A (Use a piecewise function or nested if statements.)
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TI-84 Control Structures

Loop Structures

For: For(index, start value, end value [, increment])
statements
End

While: While∗ condition
statements
End

Repeat∗∗ condition
statements
End

∗Loop while the condition is true; test condition at the beginning
∗∗Loop until the condition is true; test condition at the end

View:

• TI Calculator website • TI-84 Guidebook links
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TI-84 Control Structures Example

PRGM ▶ NEW▶ 1:Create

New

PROGRAM

Name= CONTROL

:ClrHome

:For(J,1,5)

:J^2→ K

:If gcd(K,2)= 2

:Then

:Disp "EVEN", K

:Else

:Disp "ODD", K

:End

:End

ODD

9

EVEN

16

ODD

25

Done

TI-84+ SE Screen Capture



ICM 54 – 201

R Control Structures

Conditional Statements

If: if(condition) {statements}

if(condition)
{statements}
else

{statements}

Case: switch (index, list)
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R Control Structures

Loop Structures

For: for (variable in sequence)
{statements}

While: while∗ (condition)
{statements}

repeat∗∗

{statements
if (exit condition) break
statements}

∗Loop while the condition is true; test condition at the beginning
∗∗Loop until the condition is true; test condition inside the loop

View:

• The R Project for Statistical
Computing homepage

• The Comprehensive R Archive
Network — CRAN



ICM 56 – 201

R Control Structures Example

> for (j in 1:5){
+ k = j^2

+ if (k %% 2 == 0) {
+ cat(k, "is even\n")}
+ else {
+ cat(k, "is odd\n")}
+ }
1 is odd

4 is even

9 is odd

16 is even

25 is odd

>
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Python Control Structures

Conditional Statements

if if(condition) {statements}

if(condition)
{statements}
else

{statements}

case: switch (index, list)

View the Python website.
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Python Control Structures Example

>>> for j in range(1, 6):

k=j*j

if (k%2) == 0:

print(k, ’is even’)

else:

print(k, ’is odd’)

1 is odd

4 is even

9 is odd

16 is even

25 is odd

>>>

Note: Indentation is critical in Python.
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From Code to a Flow Chart

Maple Loops

Build flow charts for the Maple code shown below:

▼ Algorithm 1.
n := 12;
r := 1;
for i from 2 to n do

r := r · i;
end do:

r;

▼ Algorithm 2.
n := 12;
R := n;
j := n−1;
while j > 1 do

R := R · j;
j := j−1;
end do:

R;

What mathematical function are these routines calculating?
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Exercises, I

Problems

1. Write an If-Then-ElseIf statement that calculates tax for a married
couple filing jointly using the 2011 NC Tax Table (before the “Flat Tax”).
a. In natural language
b. In Excel
c. In Maple

d. In MATLAB (Octave or Scilab)
e. In C (Java, Python, or R)
f. On a TI-84

2. Implement the Collatz Flow Chart
a. In pseudocode b. In Maple (as a function)

3. Write code that, given a positive integer n, prints the first n primes.

4. Give a Maple version of Euler’s method.

5. Write nested for loops that fill in the entries of an n×n Hilbert matrix
a. In Maple b. On a TI-84

6. How can a while loop be redesigned as a for loop?

7. How can a for loop be redesigned as a while loop?
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Exercises, II

Problems
8. Make a flow chart for implementing the Euclidean algorithm to find

the GCD of two positive integers p and q.

9. Write code using the Euclidean algorithm to find the GCD of two
positive integers p and q.

10. Write a Maple or MATLAB function that applies the Extended
Euclidean algorithm to two positive integers p and q to give the
greatest common divisor gcd(p,q) and to find integers a and b such
that a p+bq = gcd(p,q).

11. a. Make a flow chart for the Maple code shown in the Flow Chart
Problem worksheet.

b. What does the code do?

c. Convert the Maple statements to

i. MATLAB
ii. TI-84+
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Exercises, III

Problems

12. The “9’s-complement” of a number x is the value needed to add to x to
have 9’s. E.g., the 9’s-complement of 3 is 6; of 64 is 35; etc.

a. Write a statement to calculate the 9’s-complement of an n-digit number y; call the
result y9.

b. Write an if-then statement that performs carry-around: if the sum of two n-digits
numbers has an n+1st carry digit, drop that digit and add 1 to the sum.

c. Let r > s be two n-digit integers. Find s9 with a. Now perform carry-around on (r+ s9)
with b.

d. What simple arithmetic operation is equivalent to the result of c?

13. The compass heading CH for going from P1 = (lat1, lon1) to
P2 = (lat2, lon2) (other than the North or South poles) is given by

CH(P1,P2) =

{
L cos−1(lon2− lon1)< 0
2π−L otherwise

where L = cos−1
(

sin(lat2)−sin(lat1)cos(d)
sin(d)cos(lat1)

)
and

d = cos−1(sin(lat1)sin(lat2)+ cos(lat1)cos(lat2)cos(lon1− lon2)).
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Quick Reference Cards

Quick Reference Card Collection

• Maple 15 (Mac)

• Maple 15 (Win)

• Maplesoft’s Online help

• Excel 2011 (Mac)

• Excel 2010 (Win)

• Microsoft’s Online help

• MATLAB

• Scilab

• Octave

• Wikiversity’s
Control Structures

• C

• Java

• TI-84+: Algebra;
Trigonometry

• R

• Python 2.7, Python 3
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Special Topic: Computation Cost & Horner’s Form

Introduction to Cost
The arithmetic cost of computation is a measure of how much
mathematical work a particular expression takes to compute. We will
measure an expression in terms of the number of arithmetic operations it
requires. For example, we’ll measure the cost of computing the
expression

sin(2x4 +3x+1)
as

2 additions + 5 multiplications + 1 function call
for a total of 7 arithmetic operations plus a function call.

At a lower level, the time cost of a CPU instruction is the number of clock
cycles taken to execute the instruction. Current CPUs5 are measured in
FLoating-point OPerations per Second or FLOPS. For example, the
eight-core Intel® Core™ i9 processor used in an iMac (19/2019) can
achieve over 235 gigaFLOPS = 1011 floating-point operations per second.

5Currently computed as FLOP per cycle per core. Also see Moore’s Law.
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Horner’s Form

Partial Factoring
William Horner studied solving algebraic equations and efficient forms for
computation. Horner observed that partial factoring simplified a polynomial
calculation. Consider:

Standard Form ⇔ Horner’s Form
1+2x︸ ︷︷ ︸

1add+1mult

= 1+2x︸ ︷︷ ︸
1add+1mult

1+2x+3x2
︸ ︷︷ ︸
2add+3mult

= 1+ x · (2+3x)︸ ︷︷ ︸
2add+2mult

1+2x+3x2 +4x3
︸ ︷︷ ︸

3add+6mult

= 1+ x · (2+ x · [3+4x])︸ ︷︷ ︸
3add+3mult

1+2x+3x2 +4x3 +5x4
︸ ︷︷ ︸

4add+10mult

= 1+ x · (2+ x · [3+ x · (4+5x)])︸ ︷︷ ︸
4add+4mult

1+2x+3x2 +4x3 +5x4 +6x5
︸ ︷︷ ︸

5add+15mult

= 1+ x · (2+ x · [3+ x · (4+ x · [5+6x])])︸ ︷︷ ︸
5add+5mult

What are the patterns?
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Patterns

Two Patterns

If p(x) is an nth-degree polynomial, the cost of computation in standard
form is O(n2). Using Horner’s form reduces the cost to O(n).

Example: Let p(x) = a0 +a1x+a2x2 +a3x3 +a4x4 +a5x5 +a6x6.

Horner’s form: p(x) = a0 + x(a1 + x [a2 + x(a3 + x [a4 + x(a5 +a6x)])]).

This factored form significantly reduces the work needed
to evaluate p at a given value of x.

Modified: ?(x) = a1 + x [2a2 + x(3a3 + x [4a4 + x(5a5 +6a6x)])].

• What does this modification calculate in terms of p?
• What is the cost of this modification versus using its
standard form?
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Further Reductions

Chebyshev’s Polynomials

Pafnuty L. Chebyshev worked in number theory, approximation theory,
and statistics. The special polynomials named for him are the Chebyshev
Polynomials Tn(x), which have many interesting properties. For example,
Tn is even or odd with n, oscillates between −1 and 1 on the interval
[−1,1], and also has all its zeros in [−1,1]. The Horner form of Tn is
quite interesting. Let u = x2, then:

−3x+4x3 ⇐⇒ x(−3+4x2) = x(−3+4u)

1−8x2 +8x4 ⇐⇒ 1+u(−8+8u)

5x−20x3 +16x5 ⇐⇒ x(5+u[−20+16u])

−1+18x2−48x4 +32x6 ⇐⇒ −1+u(18+u[−48+32u])

−7x+56x3−112x5 +64x7 ⇐⇒ ?

1−32x2 +160x4−256x6 +128x8 ⇐⇒ ?
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Exercises, I

Problems
1. Make a flow chart for evaluating a polynomial using Horner’s form.

2. Write Maple or MATLAB code implementing Horner’s form.

3. How does synthetic division relate to Horner’s form?

4. Write a Maple or MATLAB function that performs synthetic division
with a given polynomial at a given value.

5. Calculate the number of additions and multiplications required for
evaluating an nth-degree polynomial

a. in standard form. b. in Horner’s form.

c. Look up the sequence {0,2,5,9,14,20,27,35,44, . . .} at The On-Line

Encyclopedia of Integer Sequences.

6. Prove that Horner’s form reduces cost from O(n2) to O(n).

7. Analyze the reduction of cost when using Horner’s form to evaluate
Chebyshev polynomials.
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III. Numerical Differentiation
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III. Numerical Differentiation

What is Numerical Differentiation?
Numerical Differentiation is the approximation of the derivative of a

function at a point using numerical formu-
las, not the algebraic rules for differentia-
tion. The basic form uses the slope of a
short chord rather than the tangent line.

Since we are subtracting numbers that are
close together, loss of computational pre-
cision can be a serious problem.

P =
�
a, f(a)

�

f(x)

mT =f 0(a)

mch⇡f 0(a)

Taylor series expansions will be our basic tool for developing formulas and
error bounds for numerical derivatives. The errors will have two main
components: truncation errors from Taylor polynomials and round-off
errors from finite-precision floating-point arithmetic.
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Taylor’s Theorem

Definition (Taylor Polynomials (1712/17156))

If f has sufficiently many derivatives at x = a, the Taylor polynomial of
degree n (or order n) is

pn(x) =
n

∑
k=0

f (k)(a)
k!

(x−a)k

where f (0)(a) = f (a).

Theorem (Taylor’s Theorem)

Suppose f has n+1 derivatives on a neighborhood of a. Then
f (x) = pn(x)+Rn(x) where

Rn(x) =
f (n+1)(c)
(n+1)!

(x−a)n+1

for some c between x and a.

6Actually, discovered by Gregory in 1671, ≈ 14 years before Taylor was born!
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Proving Taylor’s Theorem

Proof. (Taylor’s Theorem — Outline).

1. The FToC ⇒ f (x) = f (a)+
∫ x−a

0
f ′(x− t)dt.

2. Integrate by parts with u = f ′(x− t) and dv = dt:

f (x) = f (a)+ f ′(a)(x−a)+
∫ x−a

0
f ′′(x− t) · t dt.

3. Repeat the process: choose u = f (k)(x− t) and dv = tk−1/(k−1)! to arrive
at

f (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n +Rn(a,x)

where

Rn(a,x) =
1
n!

∫ x−a

0
f (n+1)(x− t) · tn dt.
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Tailored Expressions

Forms of the Remainder

Lagrange (1797): Rn(x) =
f (n+1)(c)
(n+1)! (x−a)n+1

Cauchy (1821): Rn(x) =
f (n+1)(c)

n! (x− c)n(x−a)

Integral Form: Rn(x) = 1
n!

∫ x

a
f (n+1)(t)(x− t)n dt

Uniform Form: |Rn(x)| ≤ |x−a|n+1

(n+1)! ·max
∣∣∣ f (n+1)(x)

∣∣∣= O
(
|x−a|n+1

)

Two Useful Taylor Expansions

Set x = a+h in the Taylor polynomial. Then

f (a+h) = f (a)+ f ′(a) ·h+ 1
2! f ′′(a) ·h2 + 1

3! f ′′′(a) ·h3 + · · · (1)

And now set x = a−h. Then

f (a−h) = f (a)− f ′(a) ·h+ 1
2! f ′′(a) ·h2− 1

3! f ′′′(a) ·h3±·· · (2)
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Forward Difference Approximation

Forward Difference

Subtract f (a) from both sides of Eq (1), then divide by h to obtain

f (a+h)− f (a)
h

= f ′(a)+
O(h2)

h
.

The Forward Difference Formula is

f ′(a) =
f (a+h)− f (a)

h
+O(h). (FD)

Examples

1. Suppose f (x) = 1+ xesin(x). For a = 0 and h = 0.1, we have

f ′(x)≈ (1.1105−1.0000)/0.1 = 1.1050.

2. Suppose P0 = (1.000,3.320) and P1 = (1.100,3.682). Then

f ′(x)≈ (3.682−3.320)/(1.100−1.000) = 3.620.
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Backward Difference Approximation

Backward Difference

Subtract f (a) from both sides of Eq (2), then divide by h to obtain

f (a−h)− f (a)
h

=− f ′(a)+
O(h2)

h
.

The Backward Difference Formula is

f ′(a) =
f (a)− f (a−h)

h
+O(h). (BD)

Examples

1. Again, suppose f (x) = 1+ xesin(x). For a = 0 and h = 0.1, we have

f ′(x)≈ (1.0000−0.910)/0.1 = 0.900.

2. Suppose P0 = (1.000,3.320) and P1 = (0.900,2.970). Then

f ′(x)≈ (3.320−2.970)/(1.000−0.900) = 3.500.
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Centered Difference Approximation

Centered Difference

Subtract O(h3) versions of Eqs (1) and (2).

f (a+h) = f (a)+ f ′(a) ·h+ 1
2! f ′′(a) ·h2 +O

(
h3)

f (a−h) = f (a)− f ′(a) ·h+ 1
2! f ′′(a) ·h2 +O

(
h3)

f (a+h)− f (a−h) = 2 f ′(a) ·h+O(h3)

Solve for f ′(a) to obtain:
The Centered Difference Formula

f ′(a) =
f (a+h)− f (a−h)

2h
+O(h2). (CD)

Example
1. Once more, suppose f (x) = 1+ xesin(x). For a = 0 and h = 0.1, we

have
f ′(x)≈ (1.110−0.910)/0.2 = 1.000.
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The Chart

A Table of Differences from a Function

Let f (x) = 1+ xesin(x) and a = 1.0. Then

f ′(1) = esin(1) (1+ cos(1))≈ 3.573157593.

h FD(h) error BD(h) error CD(h) error

1/21 3.494890 0.078268 3.024408 0.548750 3.259649 0.313509

1/22 3.636316 0.063158 3.347764 0.225394 3.492040 0.081118

1/23 3.628464 0.055306 3.476944 0.096214 3.552704 0.020454

1/24 3.606368 0.033210 3.529696 0.043462 3.568032 0.005126

1/25 3.591104 0.017946 3.552640 0.020518 3.571872 0.001286

1/26 3.582464 0.009306 3.563200 0.009958 3.572832 0.000326

1/27 3.577600 0.004442 3.568256 0.004902 3.572928 0.000230

1/28 3.575296 0.002138 3.570688 0.002470 3.572992 0.000166
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Another Chart

A Table of Differences from Data

Estimate the derivatives of a function given the data below (h = 0.4).

xi −2.00 −1.60 −1.20 −0.80 −0.40 0.00 0.40 0.80 1.20 1.60 2.00
yi −1.95 −0.29 0.56 0.81 0.65 0.30 −0.06 −0.21 0.04 0.89 2.55

Forward Differences
xi −2.00 −1.60 −1.20 −0.80 −0.40 0.00 0.40 0.80 1.20 1.60 2.00
yi 4.16 2.12 0.625 −0.375 −0.90 −0.90 −0.375 0.625 2.12 4.16 ▷◁

Backward Differences
xi −2.00 −1.60 −1.20 −0.80 −0.40 0.00 0.40 0.80 1.20 1.60 2.00
yi ▷◁ 4.16 2.12 0.625 −0.375 −0.90 −0.90 −0.375 0.625 2.12 4.16

Centered Differences
xi −2.00 −1.60 −1.20 −0.80 −0.40 0.00 0.40 0.80 1.20 1.60 2.00
yi ▷◁ 3.138 1.374 0.125 −0.637 −0.90 −0.6375 0.125 1.374 3.138 ▷◁

Actual Derivatives (from the function’s formula — a cubic polynomial)
xi −2.00 −1.60 −1.20 −0.80 −0.40 0.00 0.40 0.80 1.20 1.60 2.00
yi 5.325 3.057 1.293 0.033 −0.723 −0.975 −0.723 0.033 1.293 3.057 5.325
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Appendix I: Taylor’s Theorem

Methodus Incrementorum Directa et Inversa (1715)1

In 1712, Taylor wrote a letter containing his theorem without proof to
Machin. The theorem appears with proof in Methodus Incrementorum as
Corollary II to Proposition VII. The proposition is a restatement of
“Newton’s [interpolation] Formula.” Maclaurin introduced the method
(undet coeffs; order of contact) we use now to present Taylor’s theorem in
elementary calculus classes in A Treatise of Fluxions (1742) §751.

Corollary (Maclaurin’s Corollary II (pg 23))

If for the evanescent increments, the fluxions that are proportional to
them are written, the quantities

′′v, ′v, v, v
′
, v
′′
, &c. being now made all

equal to the time z uniformly flows to become z+ v, then x will become

x+ ẋ
v

1 ż
+ ẍ

v2

1 .2 ż2 + ˙̈x
v3

1 .2 .3 ż3 + &c.

• Investigate the connection between synthetic division and Taylor expansions.

1See Ian Bruce’s annotated translation.
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Appendix II: Centered Difference Coefficients Chart

Centered Finite Difference Formula Coefficients1

Derivative O(ha) x−4h x−3h x−2h x−h x x+h x+2h x+3h x+4h
2 −1/2 0 1/2

1 4 1/12 −2/3 0 2/3 −1/12
6 −1/60 3/20 −3/4 0 3/4 −3/20 1/60
8 1/280 −4/105 1/5 −4/5 0 4/5 −1/5 4/105 −1/280
2 1 −2 1

2 4 −1/12 4/3 −5/2 4/3 −1/12
6 1/90 −3/20 3/2 −49/18 3/2 −3/20 1/90
8 −1/560 8/315 −1/5 8/5 −205/72 8/5 −1/5 8/315 −1/560
2 −1/2 1 0 −1 1/2

3 4 1/8 −1 13/8 0 −13/8 1 −1/8
6 −7/240 3/10 −169/120 61/30 0 −61/30 169/120 −3/10 7/240
2 1 −4 6 −4 1

4 4 −1/6 2 −13/2 28/3 −13/2 2 −1/6
6 7/240 −2/5 169/60 −122/15 91/8 −122/15 169/60 −2/5 7/240

E.g., the third derivative’s centered difference approximation with second-order accuracy is

f (3)(x0)≈
− 1

2 f (x0−2h)+1 f (x0−h)+0 f (x0)−1 f (x0 +h)+ 1
2 f (x0 +2h)

h3 +O
(
h2) .

1See Fornberg, “Generation of Finite Difference Formulas on Arbitrarily Spaced
Grids,” Math of Comp 51 (184), pp 699–706.
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Exercises, I

Problems

1. Show that the centered difference formula is the average of the forward
and backward difference formulas.

2. Explain why the centered difference formula is O(h2) rather than O(h).

3. Add O(h4) versions of Eqs (1) and (2) to find a centered difference
approximation of f ′′(a).

4. Investigate the ratio of error in the function’s difference chart as h is
successively divided by 2 for
a. forward differences
b. backward differences
c. centered differences

5. Examine the ratios of error to h in the data difference chart for
a. forward differences
b. backward differences
c. centered differences
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Exercises, II
Problems

6. Derive the 5-point difference formula for f ′(a) by combining Taylor
expansions to O(h5) for f (a±h) and f (a±2h).

7. Write a Maple or MATLAB function that uses the backward
difference formula (BD) in Euler’s method of solving differential
equations.

8. Collect the temperatures (with a CBL) in a classroom from 8:00 am
to 6:00 pm.

a. Estimate the rate of change of temperatures during the day.
b. Compare plots of the rates given by forward, backward, and centered

differences.

9. a. Find Taylor expansions for sin and cos to O(x6). Estimate cos(1.0).
b. Since d

dx sin(x) = cos(x), we can estimate cos with the derivative of
sin. Use your expansion of sin and h = 0.05 to approximate cos(1.0)
with

i. forward
differences

ii. backward
differences

iii. centered
differences

Discuss the errors.
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IV. Root Finding Algorithms: The Bisection Method

The Bisection Method
If a continuous function f has a root r in an
interval, then r is in either the interval’s left
half or right half. Suppose r is in the right
half interval. Then r must be in either this
smaller interval’s left half or right half. Find
which half and continue the procedure.

a
br

f(x)

This process depends on the Intermediate Value Theorem

Theorem (Bolzano’s Intermediate Value Theorem (1817))

Let f be continuous on [a,b]. Suppose that y∗ is between f (a) and f (b).
Then there is a point c ∈ (a,b) such that f (c) = y∗.
In particular, if f (a) · f (b)< 0, then f has a root r with a < r < b.
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The Bisection Error

Theorem (Bisection Algorithm)

Let [a,b] be an interval on which f changes sign. Define

xn = cn =
1
2 (an−1 +bn−1)

with [an,bn] chosen by the algorithm. Then f has a root α ∈ [a,b], and

|α− xn| ≤ (b−a) ·
( 1

2

)n
.

For an error tolerance ε > 0, set

n =

⌈
log(b−a)− log(ε)

log(2)

⌉

to obtain |α− xn| ≤ ε. (This is called linear convergence.)

Theorem (Cauchy’s Bound for Real Roots1 (1829))

Suppose that r is a root of p(x) = xn +an−1xn−1 + · · ·+a0. Let
M = maxk=0..n−1 |ak|. Then |r| ≤M+1.

1A-L Cauchy, Exercices de mathématiques, De Bure frères, Paris (1829).
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The Bisection Method Algorithm

Algorithm (Bisection Method (Basic Outline))

Given f and [a,b].

1. Set k = 0 and [a0,b0] = [a,b].

2. Calculate c = 1
2 (ak +bk)

3. if f (c)≈ 0, then c is a root; quit

4. if f (c) · f (ak)< 0, then set [ak+1,bk+1] = [ak,c]

5. else if f (c) · f (bk)< 0, then set [ak+1,bk+1] = [c,bk]

6. Set k = k+1 and (if k isn’t too big) go to 2.
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The Bisection Method Pseudocode

input : a, b, eps
extern: f(x)
fa ← f(a);1:

fb ← f(b);2:

if fa ·fb >0 then3:

stop ; /* Better: sign(fa) ̸= sign(fb) */4:

n ← ceiling((log(b−a)− log(eps))/log(2));5:

for i← 1 to n do6:

c ← a+0.5·(b−a);7:

fc ← f(c);8:

if abs(fc)<eps then9:

return: c

if fa ·fc <0 then10:

b ← c;11:

fb ← fc;12:

else13:

if fa ·fc >0 then14:

a ← c;15:

fa ← fc;16:

else17:

return: c

return: c
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Newton-Raphson Method

Newton-Raphson Method2

If a function f is “nice,” use the
tangent line to approximate f . The
root of the tangent line — easy to
find — approximates the root of f .

1. f (x) = f (a)+ f ′(a)(x−a)

2. Set f (x) = 0; solve for x:

x = a− f (a)
f ′(a)

3. Set N(x) = x− f (x)
f ′(x) . Then

xn+1 = N(xn)

-1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8 5.6

-3

-2

-1

1

2

3

x0 = 2.6

x1 = 3.56

-1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8 5.6

-3

-2

-1

1

2

3

x0 = 2.6

x1 = 3.56

x2 = �1.98

x3 = 3.267

↵ = 3.199645

2The general method we use was actually developed by Simpson; Newton worked
with polynomials; Raphson iterated the formula to improve the estimate of the root.
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Newton’s Method Error

Theorem

Let f ∈ C 2(I) on some interval I ⊂ R. Suppose α ∈ I is a root of f .
Choose x0 ∈ I and define

xn+1 = xn−
f (xn)

f ′(xn)
.

Then
|α− xn+1| ≤M · |α− xn|2

or, with εn = |α− xn|,
εn+1 ≤M · ε2

n

where M is an upper bound for 1
2 | f ′′(x)/ f ′(x)| on I.

This is called quadratic or “order 2” convergence.
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Newton’s Method Algorithm

Algorithm (Newton’s Method (Basic Outline))

Given f and x0.

1. Set k = 1 and N(x) = x− f (x)
f ′(x)

.

2. Compute xk = N(xk−1).

3. If f (xk)≈ 0, then xk is a root; quit

4. else if | f (xk)| or |xk− xk−1| is very small, then xk ≈ a root; quit

5. Set k = k+1 and (if k isn’t too big) go to 2.
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Newton’s Method Pseudocode

input : x0, eps, n
extern: f(x), df(x)=f′(x)

fx0 ← f(x0);1:

dfx0 ← df(x0);2:

for i← 1 to n do3:

x1 ← x0 − fx0/dfx0;4:

fx1 ← f(x1);5:

if |fx1|+ |x1−x0|<eps then6:

return: x17:

x0 ← x1;8:

fx0 ← fx1;9:

dfx0 ← df(x0);10:

return: x1
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Secant Method

Secant Method
Newton’s method requires evaluating the derivative — this can be from
difficult to impossible in practice. Approximate the derivative in Newton’s
method with a secant line3:

xn+1 = xn−
f (xn)

f (xn)− f (xn−1)
xn−xn−1

= xn− f (xn) ·
xn− xn−1

f (xn)− f (xn−1)

0.5 1 1.5 2 2.5 3 3.5 4

-0.8

0.8

1.6

2.4

3.2

x0
x1

Newton’s Method

0.5 1 1.5 2 2.5 3 3.5 4

-0.8

0.8

1.6

2.4

3.2

x0x1

Secant Method

x2

3Historically, the methods developed the opposite way: Viète used discrete steps of 10−k

(1600); Newton used secants (1669), then truncated power series (1687); Simpson used
fluxions/derivatives (1740) with general functions.
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Secant Method Error

Theorem

Let f ∈ C 2(I) for some interval I ⊂ R. Suppose α ∈ I is a root of f .
Choose x0 and x1 ∈ I, and define

xn+1 = xn− f (xn) ·
xn− xn−1

f (xn)− f (xn−1)
.

Then
|α− xn+1| ≤M · |α− xn| · |α− xn−1|

or, with εn = |α− xn|,
εn+1 ≤M · εn · εn−1

where M is an upper bound for 1
2 | f ′′(x)/ f ′(x)| on I.

This is superlinear convergence of “order 1.6.” (Actually, it’s order 1+
√

5
2 .)
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Secant Method Algorithm

Algorithm (Secant Method (Basic Outline))

Given f , x0, and x1:

1. Set k = 2 and S(x0,x1) = x1− f (x1) ·
x1− x0

f (x1)− f (x0)
.

2. Compute xk = S(xk−1,xk−2).

3. If f (xk)≈ 0, then xk is a root; then quit

4. else if |xk− xk−1| is very small, then xk ≈ a root; quit

5. Set k = k+1 and (if k isn’t too big) go to 2.
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Secant Method Pseudocode

input : x0, x1, eps, n
extern: f(x)

f0 ← f(x0);1:

f1 ← f(x1);2:

for i ← 1 to n do3:

c ← x1 − f1·(x1−x0)/(f1−f0);4:

fc ← f(c);5:

x0 ← x1; /* update parameters */6:

x1 ← c;7:

f0 ← f1;8:

f1 ← fc;9:

if |x1−x0 |< eps then10:

return: x1 ; /* Or: |fc|< eps */

return: x1
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Regula Falsi

Regula Falsi

The regula falsi, or “false position,” method4 is very old; the Egyptians
used the concept. The method appears in the Vaishali Ganit (India, 3rd
century BC), Book on Numbers and Computation & Nine Chapters on
the Mathematical Art (China, 2nd century BC), Book of the Two Errors
(Persia, c. 900), and came to the west in Fibonacci’s Liber Abaci (1202).

Regula falsi combines the secant and bisection techniques: Use the
secant to find a “middle point,” then keep the interval with a sign
change, i.e., that brackets the root.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-1.6

-0.8

0.8

1.6
x0

x1

c
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-1.6

-0.8

0.8

1.6
x1

c

x2

4Also called Modified Regula Falsi, Double False Position, Regula Positionum, Secant Method,
Rule of Two Errors, etc. My favourite name is Ýıng bù zú: “Too much and not enough.”



ICM 98 – 201

Regula Falsi Method Error

Theorem

Let f ∈ C 2(I) for some interval I ⊂ R. Suppose α ∈ I is a root of f .
Choose a and b ∈ I such that sign( f (a)) ̸= sign( f (b)), and define

c = b− f (b) · b−a
f (b)− f (a)

.

Then
|α− c| ≤M · |α−a|

or, with εn = |α− xn|,
εn+1 ≤M · εn

where 0 < M < 1 is a constant depending on | f ′′(x)| and | f ′(x)| on I.

This is linear or “order 1” convergence. (The same as the bisection method.)
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Regula Falsi Algorithm

Algorithm (Regula Falsi (Basic Method))

Given f , a, and b:

1. Set k = 1 and S(a,b) = b− f (b) · b−a
f (b)− f (a)

=
a· f (b)−b· f (a)

f (b)− f (a)

2. Compute c = S(a,b).

3. If f (c)≈ 0, then c is a root; quit

4. If f (c)· f (a)< 0, then b← c

5. else a← c

6. If |b−a| is very small compared to |a|, then a is a root; quit

7. Set k = k+1, and (if k isn’t too big) go to 2.
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Regula Falsi Pseudocode

input : a, b, eps, n
extern: f(x)
fa ← f(a);1:

fb ← f(b);2:

if fa ·fb >0 then3:

stop ; /* Better: sign(fa) ̸= sign(fb) */4:

for i← 1 to n do5:

c ← (a·fb−b·fa)/(fb− fa) ; /* Better: c← b - fb*(b-a)/(fb-fa) */6:

fc ← f(c);7:

if |fc | <eps then8:

return: c

if fa ·fc <0 then9:

b ← c;10:

fb ← fc;11:

else12:

if fb ·fc <0 then13:

a ← c;14:

fa ← fc;15:

else16:

return: c

return: c
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Halley’s Method

Halley’s Method

Halley’s method5 of 1694 extends Newton’s method to obtain cubic
convergence. Halley was motivated by de Lagny’s 1692 work showing algebraic
formulas for extracting roots. Using the quadratic term in Taylor’s formula
obtains the extra degree of convergence. Just as Newton did not recognize the
derivative appearing in his iterative method, Halley also missed the connection
to calculus — it was first seen by Taylor in 1712. The version of Halley’s
method we use comes from applying Newton’s method to the auxiliary function

g(x) =
f (x)√
| f ′(x)|

.

Then the iterating function for Halley’s method is

xn+1 = xn−
2 f (xn) f ′(xn)

2 f ′(xn)2− f (xn) f ′′(xn)
.

5For historical background and a nice development, see Scavo and Thoo, “On
the Geometry of Halley’s Method,” Am. Math. Mo., Vol. 102, No. 5, pp. 417–426.
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Halley’s Method Error

Theorem

Let f ∈ C 3(I) on some interval I ⊂ R. Suppose α ∈ I is a root of f .
Choose x0 ∈ I and define

xn+1 = xn−
2 f (xn) f ′(xn)

2 f ′(xn)2− f (xn) f ′′(xn)
.

Then
|α− xn+1| ≤M · |α− xn|3

or, with εn = |α− xn|,
εn+1 ≤M · ε3

n

where M is an upper bound for
∣∣∣ 3 f ′′(x)2−2 f ′(x) f ′′′(x)

12 f ′(x)2

∣∣∣ on I.

This is called cubic or “order 3” convergence.
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Halley’s Method Algorithm

Algorithm (Halley’s Method (Basic Outline))

Given f and x0.

0. Compute f ′ and f ′′.

1. Set k = 1 and H(x) = x− 2 f (x) f ′(x)
2 f ′(x)2− f (x) f ′′(x)

.

2. Compute xk = H(xk−1).

3. If f (xk)≈ 0, then xk is a root; quit

4. else if | f (xk)| or |xk− xk−1| is very small, then xk ≈ a root; quit

5. Set k = k+1 and (if k isn’t too big) go to 2.
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Halley’s Method Pseudocode

input : x0, eps, n
extern: f(x), df(x)=f′(x), ddf(x)=f′′(x)

fx0 ← f(x0);1:

dfx0 ← df(x0);2:

ddfx0 ← ddf(x0);3:

for i← 1 to n do4:

x1 ← x0 − 2·fx0·dfx0 / (2·dfx0ˆ2 − fx0·ddfxo);5:

fx1 ← f(x1);6:

if |fx1|+ |x1−x0|<eps then7:

return: x18:

x0 ← x1;9:

fx0 ← f(x1);10:

dfx0 ← df(x1);11:

ddfx0 ← ddf(x1);12:

return: x1
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A Sample Problem

Polynomial Root

Find the real root of f (x) =−x11 + x2 + x+0.5 in
[ 1

2 ,
3
2
]
. (r .

= 1.098282972)
(This is f ’s only real root.)

Bisection Newton Secant Regula Falsi Halley

[0.5000,1.5000]
[1.0000,1.5000]
[1.0000,1.2500]
[1.0000,1.1250]
[1.0625,1.1250]
[1.0938,1.1250]
[1.0938,1.1094]
[1.0938,1.1016]
[1.0977,1.1016]
[1.0977,1.0996]
[1.0977,1.0986]




0.5000
−0.1280
−0.6500
−0.0236
−0.5241

3.315
3.014
2.740
2.491
2.264
2.059







1.500
1.370
1.258
1.171
1.119
1.100
1.098
1.098
·
·
·




[+0.500,+1.500]
[+0.515,+0.500]
[−0.124,+0.515]
[−0.406,−0.124]
[−0.956,−0.406]
[−0.230,−0.956]
[+0.085,−0.230]
[−0.607,+0.085]
[−1.171,−0.607]
[−0.583,−1.170]
[−0.558,−0.583]

[0.500,1.5]
[0.515,1.5]
[0.530,1.5]
[0.545,1.5]
[0.561,1.5]
[0.576,1.5]
[0.592,1.5]
[0.607,1.5]
[0.623,1.5]
[0.639,1.5]
[0.654,1.5]




0.5000
−0.3752
−0.0538
−1.2080
−0.9812
−0.6556
−0.9822
−0.6588
−0.9934
−0.6846
−1.085







1.500
1.268
1.128
1.099
1.098
1.098
·
·
·
·
·
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The Sample Problem’s Graph

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-2

-1

1

2

A plot of f (x) =−x11 + x2 + x+0.5
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Þe Chartes

Method Type Update Function

Bisection Bracketing (2 pts) B(a,b) = 1
2 (a+b)

Regula Falsi Bracketing (2 pts) R(a,b) = a f (b)−b f (a)
f (b)− f (a)

Secant method Approximating (1 pt) S(xn,xn−1) =
xn−1 f (xn)−xn f (xn−1)

f (xn)− f (xn−1)

Newton’s method Approximating (1 pt) N(xn) = xn− f (xn)
f ′(xn)

Halley’s method Approximating (1 pt) H(xn) = xn− 2 f (xn) f ′(xn)
2 f ′(xn)2− f (xn) f ′′(xn)

Method Error Convergence Speed Computation
Cost

Bisection εn+1 ≤ 1
2 εn Linear (order 1) Low

Regula Falsi εn+1 ≤C εn Linear (order 1) Medium

Secant method εn+1 ≤C εnεn−1 Superlinear (order≈ 1.6) Medium

Newton’s method εn+1 ≤C ε2
n Quadratic (order 2) High

Halley’s method εn+1 ≤C ε3
n Cubic (order 3) Very High
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Appendix III: Rate of Convergence

Definition (Rate of Convergence)

Let xn→ x∗ and set εn = |x∗− xn|. Then xn converges to x∗ with rate r iff
there is a positive constant C (the asymptotic error constant) such that

lim
n→∞

εn+1

ε r
n

=C.

Terminology

Rate Parameters

Sublinear r = 1 and C = 1
Linear r = 1 and 0 <C < 1

Superlinear r > 1
Quadratic r = 2

Cubic r = 3

NB: Quadratic and cubic are special cases of superlinear convergence.
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Exercises, I

Exercises
For each of the functions given in 1. to 7. below:

a. Graph f in a relevant window.

b. Use Maple’s fsolve to find f ’s root to 10 digits.

c. Use each of the five methods with a maximum of 15 steps and fill the table:

Method Approx Root Relative Error No. of Steps

1. The “Newton-era” test function
T (x) = x3−2x−5.

2. f (x) = 1
13 − 1

7 x− x11

3. g(x) =
∫ x

0
sin(t2/2)dt−1

4. h(x) = x−8e−x

5. R(x) =
30x−31
29(x−1)

6. S(x) =
sin(x2)+1
cos(x)+2

for x ∈ [0,4]

7. The intransigent function ψ(x) = 10 · e−x ·
(

1+
ln(x2)

x

)
.

8. Explain why the bisection method has difficulties with two roots in an interval.
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Exercises, II

Exercises
For Exercises 9. to 15., generate your personal polynomial p(x) in Maple by entering:

> randomize(your phone number, no dashes or spaces):
deg := 1+2*rand(4..9)():

p := randpoly(x, degree=deg, coeffs=rand(-2..2)):

p := unapply(sort(p), x);

9. Use fsolve to find the roots of your polynomial p(x).

10. Compare the results of the four root-finding methods applied to p(x).

11. Report on stopping conditions: function value, step/interval size, maximum
number of iterations.

12. Find any bad initial points for Newton’s method for p(x).

13. Verify Fibonacci’s root6 x = 1.368808107 of the equation x3 +2x2 +10x = 20.

14. Determine the convergence rates of the following sequences.

a. 2−n b. 1+2(1−2n) c. (n+1)/n d. sin(k)/k

15. Solve this problem from The Nine Chapters on the Mathematical Art (c. 200 BCE):
“Now an item is purchased jointly; everyone contributes 8 coins, the excess is 3;
everyone contributes 7, the deficit is 4. Tell: The number of people, the item
price, what is each?”

6Fibonacci found this root in 1225 — no one knows how he did it!
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Exercises, III

Exercises

16. Set f (x) = x3 · ex−
√

2 and x0 = 1.0.
a. Plot f over 0≤ x≤ 1 to see the root.

b. Use Newton’s method to find the root; print xn for each iteration.

c. Alter Newton’s method:

i. Replace f ′(x) in Newton’s method with a centered difference formula
approximation Eq (CD).

ii. Execute the altered Newton’s method beginning with h = 1.0.

iii. Decrease h by 0.1 and rerun the altered Newton’s method.

iv. Keep decreasing h until the results are very close to Newton’s
method.

v. Determine practical reasons for using this modification rather than
the original method.

17. [Group Exercise] Redo the previous problem finding all roots in
[−1,1] of the 8th Chebyshev polynomial

T8(x) = 128x8−256x6 +160x4−32x2 +1.
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Links and Others

Wikipedia entries:

• Bisection Method

• Newton’s Method

• Secant Method

• Regula Falsi Method

More information:

• Massoud Malek’s Root-Finding
Methods

• Chad Higdon-Topaz’s Iterative
methods for root finding (video)

See also: Interactive Educational Modules in Scientific Computing (U of I)
and MathWorld (Wolfram Research)

Investigate:

• Müller’s method

• Brent’s method

• Bernoulli’s method

• Jenkins-Traub method

• Laguerre’s method

• Durand-Kerner method

• Fibonacci Search method

• Ridder’s method

• Splitting Circle method

• Maple’s fsolve

• MATLAB’s fzero

• Wilkinson’s Perfidious Polynomial:

w(x) :=
20

∏
k=1

(x− k)
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S II. Special Topics: Modified Newton’s Method
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DOI: 10.1201/9781003299257-6
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II. Special Topic: Modified Newton’s Method

Newton’s Method Revisited
Newton’s method uses the iteration function

N(x) = x− f (x)
f ′(x)

.

A fixed point of N, which is a value x∗ where N(x∗) = x∗, is a zero of
f (x). It was really Simpson who realized the connection of Newton’s
method with calculus; Newton had developed an algebraic method in
1669 (not publishing it until 1711); Simpson’s generalized version
appeared in 1740 in his text A New Treatise of Fluxions. In 1690, midway
between Newton and Simpson, Raphson published a simplified version of
Newton’s method that was based on iterations, much like ours today.
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Modified Newton’s Method

Modified Newton’s Method
To modify Newton’s method, replace the “correcting factor” quotient
f/ f ′ with f ′/ f ′′. Our new iterator is

M(x) = x− f ′(x)
f ′′(x)

.

Choose an initial value x0. Then calculate the values xn+1 = M(xn) for
n = 1,2, . . . . The question is: Does xn have a limit?

Convergence?

Use Newton’s example function: y = x3−2x−5. Then

M(x) = x− 3x2−2
6x

.

Starting with x0 = 1 gives the sequence x1 = 0.83̄, x2 = 0.816̄,
x3 = 0.81649659, x4 = 0.81649658. Where are these points going?
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Exercises

Problems
1. Use Maple to generate a personalized random polynomial with:

> randomize(your phone number, no dashes or spaces):
deg := 1+2*rand(4..9)():

p := randpoly(x, degree=deg, coeffs=rand(-2..2)):

p := unapply(sort(p), x);

2. Apply the Modified Newton’s Method to your polynomial with a
selection of starting points.

3. Produce a chart of your intermediate results.

4. Graph your polynomial and the trajectories using your data chart.

5. Can you determine a specific value where the trajectories change
from one to another target point?

6. Investigate the Modified Newton’s Method’s rate of convergence.
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V. Numerical Integration
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V. Numerical Integration

What Is Numerical Integration?

Numerical integration or (numerical) quadrature
is the calculation of a definite integral using
numerical formulas, not the fundamental theo-
rem. The Greeks studied quadrature: given a
figure, construct a square that has the same
area. The two most famous are Hippocrates
of Chios’ Quadrature of the Lune (c. 450BC)
and Archimedes’ Quadrature of the Parabola
(c. 250BC). Archimedes used the method of ex-
haustion — a precursor to calculus — invented
by Eudoxus.

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

-0.5

0.5

1

1.5

2

2.5

Squaring the circle is one of the classical problems of constructing a
square with the area of a given circle — it was shown to be impossible by
Lindemann’s theorem (1882).1

1Lindemann was the first to prove that π is transcendental.
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Methods of Elementary Calculus

Rectangle Methods

Left endpoint sum Midpoint sum Right endpoint sum

An ≈
n

∑
k=1

f (xk−1)∆xk An ≈
n

∑
k=1

f (mk)∆xk An ≈
n

∑
k=1

f (xk)∆xk

mk =
1
2 (xk−1 + xk)

εn ≤ (b−a)2

2 ·M1 · 1
n εn ≤ (b−a)3

24 ·M2 · 1
n2 εn ≤ (b−a)2

2 ·M1 · 1
n

where Mi = max
∣∣∣ f (i)(x)

∣∣∣
∫

π

0
f (x)dx = 2≈ [1.984,2.008,1.984]n=10
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Trapezoid Sums

Trapezoid Sums

Instead of the degree 0 rectangle approximations to the
function, use a linear degree 1 approximation. The area
of the trapezoid is given by

AT = 1
2 [ f (xk−1)+ f (xk)]∆xk.

This gives an approximation for the integral
∫ b

a
f (x)dx≈

n

∑
k=1

1
2 [ f (xk−1)+ f (xk)]∆xk.

[Midpoint: measure height at average x v. trapezoid: average the height measures]

The formula is often written as

Tn ≈
[

f (x0)+

(
2

n−1

∑
k=1

f (xk)

)
+ f (xn)

]
∆xk

2
.

Error for the trapezoid rule is

εn ≤
(b−a)3

12
·M2 ·

1
n2 .
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Sample Trapezoid

Example

Let f (x) = sin(x)+ 1
2 sin(2x)− 1

4 sin(4x)+ 1
16 sin(8x) over [0,π].

With an equipartition,

∆x = π/10≈ 0.314.

Then

T10=

[
f (0)+

(
2

10

∑
k=1

f ( k
9 π)

)
+ f (π)

]
∆x
2

which gives

T10 = 1.984

with absolute error of 0.016.
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Simpson’s Rule

Simpson’s Rule

We now move to a degree 2 approximation. The
easiest way to have 3 data pts is to take the pan-
els in pairs: instead of rectangle base [xi,xi+1],
use [xi,xi+1,xi+2]. So we require an even number
of panels. The area under the parabola is

AS =
1
3

[
f (xi)+4 f (xi+1)+ f (xi+2)

]
∆x.

This gives a 2n-panel approximation for the integral
∫ b

a
f (x)dx≈

[
n

∑
k=1

f (x2k−2)+4 f (x2k−1)+ f (x2k)

]
∆x
3

most often written as

S2n = [ f (x0)+4 f (x1)+2 f (x2)+4 f (x3)+ · · ·+4( f (x2n−1)+ f (x2n)]
∆x
3
.

The error is bounded by

εn ≤
(b−a)5

180
·M4 ·

1
n4 .
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Sample Simpson

Example

Let f (x) = sin(x)+ 1
2 sin(2x)− 1

4 sin(4x)+ 1
16 sin(8x) over [0,π].

With a 10-panel equipartition,

∆x = π/10≈ 0.3141592654.

Then, with yi = f (xi),

S10=
1
3 [y0+4y1+2y2+· · ·+4y9+y10]∆x

which gives

S10 = 2.000006784

with absolute error of 6.78 ·10−6.
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A Maple Comparison

Approximating a Difficult Integral

Consider
∫ 2

1

10−4

(x− 1
2 π)2 +10−8

dx. This integrand has a sharp peak at π/2.

The exact value of the integral (using the FToC) is

arctan(5 ·103 · (4−π))− arctan(5 ·103 · (2−π))≈ 3.1411844701381.

Maple gives

n = 50 n = 500 n = 5000



left 0.0497133
right 0.0497180

midpoint 3.1210200
trapezoid 0.0497157
Simpson 2.0972500







left 0.541336
right 0.541336

midpoint 4.052010
trapezoid 0.541336
Simpson 2.881790







left 3.42282
right 3.42282

midpoint 2.88243
trapezoid 3.42282
Simpson 3.06256




To achieve a relative error below 1% requires approximately n≥ 6000.
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The Chart

Quadrature “Height” Error Bound 2

Left end point f (xi)
(b−a)2

2 ·M1 · 1
n = O(h)

Right end point f (xi+1)
(b−a)2

2 ·M1 · 1
n = O(h)

Trapezoid Rule
f (xi)+ f (xi+1)

2
(b−a)3

12 ·M2 · 1
n2 = O(h2)

Midpoint f
(

xi+xi+1
2

)
(b−a)3

24 ·M2 · 1
n2 = O(h2)

Simpson’s Rule
f (xi)+4 f (xi+1)+ f (xi+2)

3
(b−a)5

180 ·M4 · 1
n4 = O(h4)

where Mi ≥max
∣∣∣ f (i)(x)

∣∣∣ and h = 1/n.

2An approximation without an error bound has little to no value!
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Gaussian Quadrature

Johann Carl Friedrich Gauss
About 1815, while Gauss was finishing constructing an astronomical observa-
tory, he wrote a paper3 on approximating integrals. Gauss’s technique was
studied and extended by Christoffel in 1858. There are several good ways to
develop this method. We’ll use the easiest . . .

In Search of Improvements
Write the rules we’ve seen as sums:

Left endpt: Ln =
1
n f (x0)+

1
n f (x1)+ · · ·+ 1

n f (xn−1)

Right endpt: Rn =
1
n f (x1)+

1
n f (x2)+ · · ·+ 1

n f (xn)

Midpoint: Mn =
1
n f (xm1)+

1
n f (xm2)+ · · ·+ 1

n f (xmn)

Trapezoid: Tn =
1
2n f (x0)+

1
n f (x1)+ · · ·+ 1

n f (xn−1)+
1
2n f (xn)

Simpson’s: Sn =
1
3n f (x0)+

4
3n f (x1)+

2
3n f (x2)+ · · ·+ 4

3n f (xn−1)+
1

3n f (xn)

3 “Methodus nova integralium valores per approximationem inveniendi,”
Comment Soc Regiae Sci Gottingensis Recentiores, v. 3, 1816.
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Patterns

Observations
• Each of the formulas has the same form: a weighted sum

An = w1 · f (x1)+w2 · f (x2)+ · · ·+wn · f (xn)

with different sets of weights wi and different sets of nodes xi.

• Any closed interval can be mapped to and from [−1,1], so we can

focus just on
∫ 1

−1
f (x)dx.

[
T (t) = 2 t−a

b−a −1 ; T−1(t) = a
( 1−t

2

)
+b
( 1+t

2

)]

• Gauss posed the question: Is there a “best choice” of weights {wi}
and nodes {xi}? Do nodes have to be equidistant?

• The answer depends on what “best” means.

Since we have 2n unknowns wi and xi, let’s look for a set that integrates
a 2n−1 degree polynomial exactly. (Remember: a 2n−1 degree polynomial has

2n coefficients.)
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Sampling 3

Example (Third Degree)

Set n = 3. Determine the choice of wi and of xi so that
∫ 1

−1
xp dx =

3

∑
k=1

wk · xp
k

exactly for p = 0,1, . . . ,5 = 2 ·3−1.

The range for the power p gives us six equations:




w1 + w2 + w3 = 2

w1 x1 + w2 x2 + w3 x3 = 0

w1 x2
1 + w2 x2

2 + w3 x2
3 =

2
3

w1 x3
1 + w2 x3

2 + w3 x3
3 = 0

w1 x4
1 + w2 x4

2 + w3 x4
3 =

2
5

w1 x5
1 + w2 x5

2 + w3 x5
3 = 0





=⇒





x1 =−
√

3
5 , x2 = 0, x3 =

√
3
5

w1 =
5
9 , w2 =

8
9 , w3 =

5
9

Our Gaussian quadrature is G3( f ) = 5
9 f
(
−
√

3
5

)
+ 8

9 f (0)+ 5
9 f
(√

3
5

)
.
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Testing Gauss

Random Polynomials

Generate and test a random 5th-degree polynomial.

p := unapply(sort(randpoly(x, degree = 5), x), x)

x→−7x5 +22x4−55x3−94x2 +87x−56

G3 := 5/9*p(-sqrt(3/5)) + 8/9*p(0) + 5/9*p(sqrt(3/5))

− 2488
15

Int(p(x), x = -1..1) = int(p(x), x = -1..1)
∫ 1

−1
p(x)dx =− 2488

15

Generate and test a random 7th-degree polynomial.

q := unapply(sort(randpoly(x, degree = 7), x), x)

x→ 97x7−73x6−4x5−83x3−10x−62

int(q(x),x = -1..1)= 5/9*q(-sqrt(3/5)) + 8/9*q(0) + 5/9*q(sqrt(3/5))
722
7 = 2662

25
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Gaussian Properties

Theorem (Error Estimate)

Let f have 2n continuous derivatives. Then for εn=

∣∣∣∣Gn−
∫ 1

−1
f (x)dx

∣∣∣∣,
εn ≤

π

22n · (2n)!
·M2n

where M2n ≥max
∣∣∣ f (2n)(x)

∣∣∣.

Values of Gaussian Weights and Nodes
There are numerous sources online, e.g.,:

1. The classic Abramowitz and Stegun Handbook (see the entire book)

2. Holoborodko or Kamermans

We could calculate the values directly:

Set Pn(x) = 1
2n n! · dn

dxn

[(
x2−1

)n
]
(the Legendre polynomials). Then

{xi}n
i=1 = {zeros of Pn} and wi =

2

(1− x2
i ) [P

′
n(xi)]

2 .
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Gauss-Kronrod Quadrature

Aleksandr Kronrod’s Idea (1964)

One difficulty in Gaussian quadrature is that increasing the number of
nodes requires recomputing all the values of

• nodes • weights • function evaluations

Kronrod4 discovered he could interlace n+1 new nodes with n original
Gaussian nodes and have a rule of order 3n+1. A 2n+1 node Gaussian
quadrature would have order 4n+1, but with significant extra
computation for an increase of only n in order over Kronrod’s method.[
Bad news: calculating the nodes and weights is way beyond the scope of our class.
The nodes are the roots of the Stieltjes or Stieltjes-Legendre polynomials. (App IV)

]

Gauss-Kronrod quadrature is used in Maple, Mathematica, MATLAB, and
Sage; it’s included in the QUADPACK library, the GNU Scientific Library,
the NAG Numerical Libraries, and in R. GK7,15 is the basis of numerical
integration in TI calculators. (Casio uses Simpson’s rule; HP, adaptive Romberg.)

4Kronrod, A. S. (1964.) “Integration with control of accuracy” (in Russian),
Dokl. Akad. Nauk SSSR 154, 283–286.
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Gauss-Kronrod Quadrature in Practice

GK7,15 (1989)

A widely used implementation is based on a Gaussian quadrature with 7 nodes.
Kronrod adds 8 to total 15 nodes.

G7 =
7

∑
k=1

wk f (xk)

GK7,15 =
15

∑
j=1

w j f (x j)

ε7,15 ≈
∣∣G7−GK7,15

∣∣

or, in practice, use5

≈
[
200

∣∣G7−GK7,15
∣∣]3/2

GK7,15 on [−1,1]
Gauss-7 nodes Weights

0.00000 00000 00000 0.41795 91836 73469
±0.40584 51513 77397 0.38183 00505 05119
±0.74153 11855 99394 0.27970 53914 89277
±0.94910 79123 42759 0.12948 49661 68870

Kronrod-15 nodes Weights
0.00000 00000 00000 G 0.20948 21410 84728
±0.20778 49550 07898 K 0.20443 29400 75298
±0.40584 51513 77397 G 0.19035 05780 64785
±0.58608 72354 67691 K 0.16900 47266 39267
±0.74153 11855 99394 G 0.14065 32597 15525
±0.86486 44233 59769 K 0.10479 00103 22250
±0.94910 79123 42759 G 0.06309 20926 29979
±0.99145 53711 20813 K 0.02293 53220 10529

5Kahaner, Moler, & Nash, Numerical Methods and Software, Prentice-Hall, 1989.
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GK Sample

Example

Find
∫ 1

−1
e−x2

dx.

Using Maple gives:

G7 =
7

∑
k=1

wk f (xk) = 1.49364828886941

GK7,15 =
15

∑
k=1

wk f (xk) = 1.49364826562485

ε7,15 ≈
∣∣G7−GK7,15

∣∣= 2.324456 ·10−8

int(f(x), x=-1..1, numeric)≈ 1.49364826562485 = GK7,15

See Maple’s Online Help for int/numeric to see the methods available.
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A Class Exercise

Easy, but Hard

Set f (x) = x−⌊x⌋. Calculate
∫ 6.4

0
f (x)dx.

Set n = 10. Find
1. The exact value 3.08

2. Left endpoint approximation

3. Right endpoint approximation

4. Midpoint approximation

5. Trapezoid rule approximation

6. Simpson’s rule approximation

7. Gauss 7 quadrature

8. Gaussian-Kronrod 7-15 quadrature
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A Menagerie of Test Integrals

Integrals for Testing Numerical Quadratures,6 I
Lyness:

1. I(λ ) =
∫ 2

1

0.1
(x−λ )2 +0.01

dx

Piessens, de Doncker-Kapenga, Überhuber, & Kahaner:

2.
∫ 1

0
xα log

(
1
x

)
dx =

1
(1+α)2

3.
∫ 1

0

4−α

(
x− π

4

)2
+16−α

dx

= tan−1 ((4−π)4α−1)

+ tan−1 (π4α−1)

4.
∫

π

0
cos(2α sin(x))dx = π J0(2α )

5.
∫ 1

0

∣∣x− 1
3

∣∣α dx = ( 2
3 )

α+1
+( 1

3 )
α+1

1+α

6.
∫ 1

0

∣∣∣x− π

4

∣∣∣
α

dx

=
(1− π

4 )
α+1

+( π
4 )

α+1

1+α

7.
∫ +1

−1

1√
1− x2

1
1+ x+2−α

dx

= π√
(1+2−α )2−1

6D. Zwillinger, Handbook of Integration p. 272, (A K Peters/CRC Press, 1992).
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Test Integrals, II

Integrals for Testing Numerical Quadratures, II
Piessens et al. (continued):

8.
∫

π/2

0
sinα−1(x)dx

= 2α−2 Γ2( α
2 )

Γ(α)

9.
∫ 1

0
logα−1

(
1
x

)
dx = Γ(α)

10.
∫ 1

0

cos(2α x)√
x(1− x)

dx

= π cos(2α−1)J0(2α−1)

11.
∫

∞

0
x2e−2−α x dx = 23α+1

12.
∫

∞

0

xα−1

(1+10x)2 dx =
(1−α)π

10α sin(πα)

Berntsen, Espelid, & Sørevik:

13.
∫ 1

0

∣∣x− 1
3

∣∣−1/2
dx (singularity)

14.
∫ 1

−1
U(x)ex/2 dx (discontinuity)

15.
∫ 1

0
e2|x−1/3| dx (C0 function)

16.
∫ 2

1

10−4

(
x− π

2

)2
+10−8

dx (sharp peak)
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Appendix IV: Legendre & Stieltjes Polynomials for GK7,15

The Polynomials of GK7,15

The Gaussian nodes for G7 are the roots of the Legendre polynomial p7

p7(x) =
429
16

x7− 693
16

x5 +
315
16

x3− 35
16

x.

The additional nodes Kronrod adds for GK7,15 are the roots of the Stieltjes

polynomial E8 (from solving the system:
{∫ 1

−1
p7(x)E8(x)xk dx = 0 for k = 0..7

}
)

E8(x) = c
[

4854324041
52932681 x8− 1142193892

5881409 x6 + 765588166
5881409 x4− 501576364

17644227 x2 +1
]
.
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Problems

Exercises
For each of the following functions, investigate the integrals using: left endpoint,
midpoint, trapezoid, and Simpson’s rules.

1. S(x) =
∫ x

0

[
sin(t2/2)−

√
π/(2x)

]
dt

2. Lyness’ integral I(λ ) =
∫ 2

1

0.1
(x−λ )2 +0.01

dx for λ = π/2

3. Modified Piessens’ integral
∫ 1

−1

∣∣∣x2− π2

16

∣∣∣
0.1

dx

Investigate Gaussian and Gauss-Kronrod quadrature (after transforming the interval to
[−1,1]) of the integral:

4.
∫ 2

1

10−4

(
x− π

2

)2
+10−8

dx

5. Explain why the integrals

∫ 1

−1
p7(x)dx

∫ 1

−1
E8(x)dx

∫ 1

−1
p7(x) ·E8(x)dx

are all equal to zero. Use numerical methods to approximate each.
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Links and Others

Wikipedia entries:

• Newton-Cotes formulas

• Romberg’s method

• Clenshaw-Curtis integration

• Cubature

More information:

• Adaptive Simpson’s Rule

• Monte Carlo Integration

• Legendre Polynomials

• Chebyshev Polynomials

See also: MathWorld (Wolfram Research) and Interactive Educational Modules
in Scientific Computing (U of I)

Investigate:

• Boole’s Rule

• adaptive quadrature

• orthogonal polynomials

• Vandermonde Matrix

• Maple’s evalf/Int command

• The Maple command
ApproximateInt in the
Student[Calculus1] package

• MATLAB’s integral command

• Cubature
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VI. Polynomial Interpolation
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VI. Polynomial Interpolation

What Is Polynomial Interpolation?

An interpolating polynomial p(x) for a set of points S is a polynomial
that goes through each point of S. That is, for each point Pi = (xi,yi) in
the set, p(xi) = yi.

Typical applications include:

Approximating Functions TrueType Fonts (2nd deg) Fast Multiplication
Cryptography PostScript Fonts (3rd deg) Data Compression

Since each data point determines the value of one polynomial coefficient,
an n-point data set has an n−1 degree interpolating polynomial.

p4(x) = 2
3x4 � 8

3x2 + 1S =

8
>>>><
>>>>:

[�2, 1]
[�1,�1]

[0, 1]
[1,�1]
[2, 1]

9
>>>>=
>>>>;
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Free Sample

Finding an Interpolating Polynomial

Let S = {[−2,1], [−1,−1], [0,1], [1,−1], [2,1]}.

1. Since S has 5 points, we compute a 4th degree polynomial

p4(x) = a0 +a1x+a2x2 +a3x3 +a4x4.

2. Substitute the values of S into p4; write the results as a system of
linear equations.



1
−1

1
−1

1



=




a0−2a1 +4a2−8a3 +16a4
a0−a1 +a2−a3 +a4

a0
a0 +a1 +a2 +a3 +a4

a0 +2a1 +4a2 +8a3 +16a4



=




1 −2 4 −8 16
1 −1 1 −1 1
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16







a0
a1
a2
a3
a4




3. Solve via your favorite method: p4(x) = 2
3 x4− 8

3 x2 +1.
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Toward a Better Way: Lagrange Interpolation

Definition
Knots or Nodes: The x-values of the interpolation points.

Lagrange Fundamental Polynomial: Given a set of n+1 knots, define

Li(x) =∏
k=0..n

k ≠ i

x− xk

xi− xk

=
x− x0

xi− x0
×·· ·× x− xi−1

xi− xi−1
× x− xi+1

xi− xi+1
×·· ·× x− xn

xi− xn
.

Lagrange Interpolating Polynomial: Given a set of n+1 data points

(xk,yk), define

pn(x) =
n

∑
k=0

yk Lk(x).
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Sampling a Better Way

Example (Lagrange Fundamental Polynomials)

The set of knots [−2,−1,0,1,2] gives

L0(x) = ����HHHH
x−(−2)
−2−(−2)

delete

· x−(−1)
−2−(−1) · x−0

−2−0 · x−1
−2−1 · x−2

−2−2

L1(x) =
x−(−2)
−1−(−2) · ����HH

HH
x−(−1)
−1−(−1)

delete

· x−0
−1−0 · x−1

−1−1 · x−2
−1−2

L2(x) =
x−(−2)
0−(−2) ·

x−(−1)
0−(−1) · ��@

@
x−0
0−0
delete

· x−1
0−1 · x−2

0−2

L3(x) =
x−(−2)
1−(−2) ·

x−(−1)
1−(−1) · x−0

1−0 · ��@
@

x−1
1−1
delete

· x−2
1−2

L4(x) =
x−(−2)
2−(−2) ·

x−(−1)
2−(−1) · x−0

2−0 · x−1
2−1 · ��@

@
x−2
2−2
delete

Graph the Lk!
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Sampling a Better Way

Example

Let S = {[−2,1], [−1,−1], [0,1], [1,−1], [2,1]}.

We have [xk] = [−2,−1,0,1,2] and [yk] = [1,−1,1,−1,1]. Then

p4(x) =
4

∑
k=0

yk Lk(x). So

p4(x) = (1) · x+1
−2+1 · x−0

−2−0 · x−1
−2−1 · x−2

−2−2

+(−1) · x+2
−1+2 · x−0

−1−0 · x−1
−1−1 · x−2

−1−2

+(1) · x+2
0+2 · x+1

0+1 · x−1
0−1 · x−2

0−2

+(−1) · x+2
1+2 · x+1

1+1 · x−0
1−0 · x−2

1−2

+(1) · x+2
2+2 · x+1

2+1 · x−0
2−0 · x−1

2−1 .

Then simplified p4(x) = 2
3 x4− 8

3 x2 +1.
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An “Easier” Lk Formula

Compact Expressions

For a set [xk] of n+1 knots, we defined Li(x) =∏
k=0..n

k ̸= i

x− xk

xi− xk
. This formula is

computationally intensive.

Set ω(x) =
n

∏
k=0

(x− xk).

1. The numerator of Li is ω(x)/(x− xi).

2. The denominator of Li is ω(x)/(x− xi) evaluated at xi. Rewrite as
ω(x)
x− xi

=
ω(x)−ω(xi)

x− xi
. Take the limit as x→ xi:

lim
x→xi

ω(x)−ω(xi)

x− xi
= ω

′(xi).

Thus Li(x) =
ω(x)

(x− xi)ω ′(xi)
. A very compact formula!
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Properties of the Lk’s

Proposition

For the Lagrange interpolating polynomial pn(x) =
n

∑
k=0

ykLk(x):

1. pn(x) is the unique nth degree polynomial s.t. p(xk) = yk for k = 0..n.

2. Lk(x j) = δk j =

{
1 j = k
0 j ≠ k

. (See Kronecker delta.)

3.
n

∑
k=0

Lk(x) = 1.

4. If q(x) is a polynomial of degree ≤ n with yk = q(xk), then q≡ pn.

5. The set {Lk(x) : k = 0..(n−1)} is a basis of Pn−1.

Theorem (Lagrange Interpolation Error)

If f ∈ C n+1[a,b] and {xk} ∈ [a,b], then

εn = | f (x)− pn(x)| ≤
(b−a)n+1

(n+1)!
max | f (n+1)(x)|.
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Drawbacks

More Knots
To decrease the error, use more knots. But . . . all the Lk(x) change.

1. Set {xk}= {−2,1,2}. Then

L0(x) =
x−1
−2−1

· x−2
−2−2

= 1
12 x2− 1

4 x+ 1
6

L1(x) =
x+2
1+2

· x−2
1−2

=− 1
3 x2 + 4

3

L2(x) =
x+2
2+2

· x−1
2−1

= 1
4 x2 + 1

4 x− 1
2 .

2. Set {xk}= {−2,−1,1,2}. Then

L0(x) =
x+1
−2+1

· x−1
−2−1

· x−2
−2−2

=− 1
12 x3 + 1

6 x2 + 1
12 x− 1

6

L1(x) =
x+2
−1+2

· x−1
−1−1

· x−2
−1−2

= 1
16 x3− 1

6 x2− 2
3 x+ 2

3

L2(x) =
x+2
1+2

· x+1
1+1

· x−2
1−2

=− 1
6 x3− 1

6 x2 + 2
3 x+ 2

3

L3(x) =
x+2
2+2

· x+1
2+1

· x−1
2−1

= 1
12 x3 + 1

6 x2− 1
12 x− 1

6 .
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Interlude: Bernstein Polynomials

Definition (Bernstein Polynomials of f )

Bernstein Basis Polynomials: bn,k(x) =
(n

k

)
xk(1− x)n−k for k = 0..n

Bernstein Polynomial of f : Let f : [0,1]→ R. Then

Bn( f ) =
n

∑
k=0

f
(

k
n

)(
n
k

)
xk(1− x)n−k.

Note: If g : [a,b]→ R, then use f (x) = g
(
a+(b−a)x

)
.

Example

Let f (x) = x3 for x ∈ [0,1]. Then Bn( f ) =
n
∑

k=0

k3

n3

(k
n

)
xk(1− x)n−k.

B1(x) = x B2(x) = 1
4 x+ 3

4 x2

B3(x) = 1
9 x+ 2

3 x2 + 1
9 x3 B4(x) = 1

16 x+ 9
16 x2 + 3

8 x3



ICM 150 – 201

Bernstein Basis Functions

Bernstein Basis Functions, n = 3
k=0: b3,0(x) = (1− x)3 k=1: b3,1(x) = 3x(1− x)2

k=2: b3,2(x) = 3x2(1− x) k=3: b3,3(x) = x3
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Bernstein and Lagrange

Example ( f (x) = Heaviside(x− 1
2))

p1 B1( f )

p4 B4( f )
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Newton Interpolation

Newton Basis Polynomials

In order to make it easy to add a new knot, we change the set of basis
polynomials. Given a set of n+1 knots, {xk}, set

N0(x) = 1
N1(x) = (x− x0)

N2(x) = (x− x0)(x− x1)

N3(x) = (x− x0)(x− x1)(x− x2)
...

Nn(x) = (x− x0)(x− x1)(x− x2) · · ·(x− xn−1).

Now let
Pn(x) =

n

∑
k=0

akNk(x).

Note that BN = {Nk(x) |k = 0..n} forms a basis for Pn.
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The Newton Coefficients

Calculating the ak’s

For a set of n+1 data points {[xk,yk]}, define the (forward) divided
differences recursively as

[y0] = y0

[y0,y1] =
[y1]− [y0]

x1− x0

[y0,y1,y2] =
[y1,y2]− [y0,y1]

x2− x0
...

Then the Newton interpolating polynomial is

Pn(x) = [y0]+ [y0,y1](x− x0)+ [y0,y1,y2](x− x0)(x− x1)

+ [y0,y1,y2,y3](x− x0)(x− x1)(x− x2)+ . . .

=
n

∑
k=0

[y0, . . . ,yk]Nk(x).
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First Sample

A Used Polynomial

Let S = {[−2,1], [−1,−1], [0,1], [1,−1], [2,1]}.
Begin by building a difference tableau.

x −2 −1 0 1 2

y 1 −1 1 −1 1

[y0] 1 −1 1 −1 1

[y0,y1] −2 2 −2 2

[y0,y1,y2] 2 −2 2

[y0,y1,y2,y3] − 4
3

4
3

[y0,y1,y2,y3,y4]
2
3

Then P4(x) =
n
∑

k=0
[y0, . . . ,yk]Nk(x)

= 1−2(x+2)+2(x+2)(x+1)− 4
3 (x+2)(x+1)(x)+ 2

3 (x+2)(x+1)(x)(x−1)

P4(x) = 1− 8
3 x2 + 2

3 x4.
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Second Sample

The Heaviside Function

Set S =
{
[0,0], [ 1

5 ,0], [
2
5 ,0], [

3
5 ,1], [

4
5 ,1], [1,1]

}
.

Begin by building a difference tableau.

x 0 0.2 0.4 0.6 0.8 1

y 0 0 0 1 1 1

[y0,y1] 0 0 5 0 0

[y0,y1,y2] 0 25
2 − 25

2 0

[y0,y1,y2,y3]
125
6 − 125

3
125
6

[y0,y1,y2,y3,y4] − 625
8

625
8

[y0,y1,y2,y3,y4,y5]
625
4

Then P5(x) =
5
∑

k=0
[y0, . . . ,yk]Nk(x)

P5(x) = 137
12 x− 875

8 x2 + 1000
3 x3− 3125

8 x4 + 625
4 x5.
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Two Comparisons

Example (cos(πx) v. Lagrange, Newton, & Taylor)

Lagrange: L4 =
(x+1)(x)(x−1)(x−2)

24 +
(x+2)(x)(x−1)(x−2)

6 +
(x+2)(x+1)(x−1)(x−2)

4

+
(x+2)(x+1)(x)(x−2)

6 +
(x+2)(x+1)(x)(x−1)

24

Newton: N4 = 1−2(x+2)+2(x+2)(x+1)− 4
3 (x+2)(x+1)(x)

+ 2
3 (x+2)(x+1)(x)(x−1)

Taylor: T4 = 1− π2

2 x2 + π4

24 x4
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Second Comparison

Shifted Heaviside: f (x) = Heaviside(x−1/2) on [0,1]

Lagrange: L5 =
3125

12 (x)
(
x− 1

5
)(

x− 2
5
)(

x− 4
5
)
(x−1)

− 3125
24 (x)

(
x− 1

5
)(

x− 2
5
)(

x− 3
5
)
(x−1)

+ 625
24 (x)

(
x− 1

5
)(

x− 2
5
)(

x− 3
5
)(

x− 4
5
)

Newton: N5 =
125

6 (x)
(
x− 1

5
)(

x− 2
5
)

− 625
8 (x)

(
x− 1

5
)(

x− 2
5
)(

x− 3
5
)

+ 625
4 (x)

(
x− 1

5
)(

x− 2
5
)(

x− 3
5
)(

x− 4
5
)

Bernstein: B5 = 10x3(1− x)2 +5x4(1− x)+ x5

Taylor: T5 centered at the middle a = 1
2 : Not possible. (Why?)

Centered at a ∈ [0, 1
2 ), T5 = 0

Centered at a ∈ ( 1
2 ,1], T5 = 1
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Interlude: Splines

Splines

Lagrange and Newton polynomials oscillate excessively when there are a
number of closely spaced knots. To alleviate the problem, use “splines,”
piecewise, smaller-degree polynomials with conditions on their
derivatives. The two most widely used splines:

Bézier splines are piecewise Bernstein polynomials [Casteljau (1959) and
Bézier (1962)].

Cubic B-splines are piecewise cubic polynomials with second derivative
equal to zero at the joining knots [Schoenberg (1946)].

Along with engineering, drafting, and CAD, splines are used in a wide
variety of fields. TrueType fonts use 2-D quadratic Bézier curves.
PostScript and MetaFont use 2-D cubic Bézier curves.
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Exercises, I

Exercises
For each of the functions given in 1. to 5.:

• Find the Lagrange polynomial of order 6

• Find the Newton polynomial of order 6

• Find the Bernoulli polynomial of order 6

and plot the interpolation polynomial with the function.

1. f (x) = sin(2πx) on [0,1]

2. g(x) = ln(x+1) on [0,2]

3. h(x) = tan(sin(x)) on [−π,π]

4. k(x) =
x

x2 +1
on [−10,10]

5. S(x) =
∫ x

0

[
sin( 1

2 t2)−
√

π

2x

]
dt

for x ∈ [0,10]

6. Find an interpolating polynomial for the data given below. Plot the
polynomial with the data.

[
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
4.2 2.2 2.0 8.7 5.7 9.9 0.44 4.8 0.13 6.4

]



ICM 160 – 201

Exercises, II

Exercises

7. An error bound for Newton interpolation with n+1 knots {xk} is

| f (x)−N(x)| ≤ 1
(n+1)! ·max

∣∣∣ f (n+1)(x)
∣∣∣ ·

n

∏
k=0

(x− xk).

Show this bound is less than or equal to the Lagrange interpolation error
bound. How does this make sense in light of the unicity of interpolation
polynomials? (NB: The formula for Newton interpolation also applies to
Lagrange interpolation.)

8. Investigate interpolating Runge’s “bell function” r(x) = e−x2
on the

interval [−5,5]

a. with 10 equidistant knots,
b. with “Chebyshev knots” xk = 5cos((n− j)π/n) with j = 0..10.

9. Write a Maple function that produces a difference tableau for a data set.
Test your function with the data set produced by
> myData := [seq([k,rand(−9..9)()],k = 1..10)];
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Links and Others

Wikipedia entries:

• Lagrange Polynomial

• Bernstein Polynomials

• Newton Polynomial

• Wavelets

More information:

• Lagrange Interpolation

• Newton Interpolation

• Legendre Polynomial Calculator

• Chebyshev Polynomial Calculator

See also: Interpolation at MathWorld (Wolfram Research)

Investigate:

• Aitken Interpolation

• Extrapolation

• Gauss’s Interpolation Formula

• Hermite Interpolation

• Newton-Cotes Formulas

• Thiele’s Interpolation Formula

• Vandermonde Matrix

• The Maple command
PolynomialInterpolation in the
CurveFitting package

• MATLAB’s fit command

• Splines and Bézier curves

• Rational Interpolation
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S III. Case Study: TI Calculator Numerics
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S III. Case Study: TI Calculator Numerics

Introduction
Texas Instruments started a research project in 1965 to
design a pocket calculator. The first pocket calculators
appeared in the early 1970s from the Japanese companies
Sanyo, Canon, and Sharp. The HP-35 (it had 35 keys) was
the first scientific pocket calculator, introduced by Hewlett
Packard in 1972 for $395. In 1974, HP released the
HP-65 ($795), the first programmable pocket calculator.

Texas Instruments’ TI-8x series is based on the Zilog Z-80
processor (1976), an 8-bit CPU originally running at 2
MHz. The TI-81 came out in 1990 with a 2 MHz Z80 and
2.4 KB RAM. The TI-84 Plus CE (released in 2015) has a
48 MHz Z80 with 4 MB Flash ROM and 256 KB RAM. In
2013, the calculators’ displays upgraded to 320×240 pixels
from the 1990’s 96×64 pixels.1

1TI’s Nspire calculators use an ARM processor.
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TI-80 Series Calculators

Timeline of the TI-80 Series

Model Year Z80 Processor RAM KB/ROM MB

TI-81 1990 2 MHz 2.4 / 0
TI-82 1993 6 MHz 28 / 0
TI-83 1996 6 MHz 32 / 0
TI-83 Plus 1999 6 MHz 32 / 0.5
TI-83 Plus SE 2001 15 MHz 128 / 2
TI-84 Plus 2004 15 MHz 128 / 1
TI-84 Plus SE 2004 15 MHz 128 / 2
TI-84 Plus C 2013 15 MHz 128 / 4
TI-84 Plus CE 2015 48 MHz 256 / 4

TI-81 TI-82 TI-83 TI-83+ TI-83+SE TI-84+ TI-84+SE TI-84+CE
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TI Floating Point

TI Floating Point Structure
TI’s numeric model is not IEEE-754 compliant. The floating point format is

9 Bytes

0 +1 +2 +3 +4 +5 +6 +7 +8
s/T EXP DD DD DD DD DD DD DD

s/T: Sign and Type Byte

8 Bits

7 6 5 4 3 2 1 0
SIGN reserved TYPE

Floating point types: Real: 0; Complex: 0Ch; (List: 01h; Matrix: 02h; etc.)

EXP: Power of 10 exponent coded in binary, biased by 80h

DD: Mantissa in BCD, 7 bytes of two digits per byte. While the mantissa
has 14 digits, only 10 (+2 exponent digits) are displayed on the screen.
(Many math routines use 9-byte mantissas internally to improve accuracy.)

Examples: 3.14159265 = 00 80 31 41 59 26 50 00 00

−230.45 = 80 82 23 04 50 00 00 00 00
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TI Floating Point Software

TI Floating Point Software
There are six RAM locations called the Floating Point Registers OP1 to OP6;
each is 11 bytes (with 9 byte mantissas); they are used extensively for floating
point computations. The routines listed below, called in assembly programs,
operate on the value in OP1 unless noted.

TI’s operating system2 includes the functions:

Standard Function Transcendental

FPAdd (OP1+OP2) Ceiling Sin ASin

FPSub (OP1−OP2) Int Cos ACos

FPRecip (1/OP1) Trunc Tan ATan

FPMult (OP1×OP2) Frac SinH ASinH

FPDiv (OP1÷OP2) Round CosH ACosH

FPSquare (OP1×OP1) RndGuard (to 10 d) TanH ATanH

SqRoot RnFx (to FIX) LnX EToX

Factorial (n ·0.5≥−0.5) Random LogX TenX (10OP1)

Max(OP1, OP2) RandInt

Min(OP1, OP2)

2See TI-83 Plus Developer Guide (also covers the TI-84 series).
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Numeric Derivatives

nDeriv

TI uses a centered difference formula

f ′(a)≈ f (a+ ε)− f (a− ε)

2ε
.

The default step size is ε = 0.001. The command can’t be nested and
doesn’t check whether or not f is differentiable at a.

Syntax: nDeriv(expression,variable,value [,ε])

(Screen images are from a TI-84+SE with the 2.55MP OS.)
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Numerically Finding Roots

solve

TI uses a blend of the bisection and secant root-finding algorithms. (See
Appendix V.) The default initial interval is [−1099,1099]. Solve does not
find roots of even multiplicity since the algorithm requires a sign change.
(solve is available only through catalog or the Solver application.)

To find a different root, use a starting value close to the desired new
solution; a graph is a good “initial value generator.”

Syntax: solve(expression,variable,initial guess)
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Numeric Quadrature

fnInt

TI uses an adaptive Gauss-Kronrod 7-15 quadrature

∫ 1

−1
f (x)dx≈

15

∑
k=1

f (xk) ·wk.

The default error tolerance is ε = 10−5. The command can’t be nested
and doesn’t check if f is integrable over [a,b].

Syntax: fnInt(expression,variable,lower,upper [,ε])
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Transcendental and Other Functions

Numeric Function Calculations
• For trigonometric, logarithmic, and exponential functions, TI uses a

modified CORDIC algorithm. CORDIC’s standard “rotations” of 2−k are
replaced with 10−k. (See the CORDIC Project.)

• The factorial x! where x is a multiple of 1
2 for − 1

2 ≤ x≤ 69 is computed
recursively using

x! =





x · (x−1)! x > 0
1 x = 0√

π x =− 1
2
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Appendix V: TI’s Solving Algorithm

Bisection and Secant Combined
The solve function and the Solver application use a clever, modified
combination of the secant method and bisection.3 The logic is:

1. Order the bracketing points a and b so that | f (b)| ≤ | f (a)|.
2. Calculate a new point c using the secant method.

3. If c is:

a. outside the interval, replace c with the midpoint (bisection),
b. too close to an endpoint (within h), replace c with c = b±h, a

specified minimum step in the interval.

4. The new bracketing points are a & c or b & c, whichever pair has the sign
change.

5. If the error tolerance is met or the number of iterations is maximum, then
return c, otherwise, go to Step 1.

3“Solve() uses a combination of bisection and the secant method, as described in
Shampine and Allen Numerical Computing: An Introduction, Saunders, 1973”
(pp. 96–100 and 244) according to the TI 85 Knowledge Base.



ICM 172 – 201

Exercises, I

Problems

1. Enter 1 + 1ee−13. Now enter Ans− 1. Explain the result.

2. Enter π−3.141592654 on a TI-84 and a TI Nspire CAS. Explain the
different results.

3. Explain the result of nDeriv(|x|,x,0).

4. Define Y1 to be the function f (x) =
10−8− (x−π/2)2

10−16 +(x−π/2)2 . Explain the

results from using solve with an initial guess of:

a. 0
b. 1.5

5. Define f by f (x) =
∣∣x− 1

3

∣∣−8/9
. Compare evaluating

∫ 1

−1
f (x)dx with

a. a TI-84+ SE,
b. Maple.
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Exercises, II

Problems

6. Using the Gamma function, we can define x! = Γ(x+1) =
∫

∞

0
zx e−z dz.

Compute (1/4)! using the Gamma function with a calculator and with
Maple.

7. Investigate the integral
∫ 1

−1

π

π−3x39 dx numerically and symbolically. First,

graph the integrand.

8. Report on how the calculator computes points to draw a graph.

9. Compare graphs of s(x) = 3
√

x over the interval −1≤ x≤ 1 from the
calculator and from Maple. Explain the differences.

10. Explain the possible sources of error when the calculator computes

∫ 1

0

(
d
dt

(
T 10
)

T=X

)
dX

using nDeriv and fnInt.
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Projects
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VII. Projects

The Project List

• One Function for All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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One Function for All

Project: One Function for All, the Normal Distribution
The mean and standard deviation for total SAT scores for 2021 are µ = 1061
(from Evidence-Based Reading 533 + Math 528) and σ = 217, respectively.1

Define the function

F(x) =
1√

2πσ2

∫ x

−∞

e−
1
2 (

t−µ

σ
)

2

dt.

1. Estimate the derivative of F(x) for student scores that are one standard
deviation above the mean.

2. The minimum score for students scoring in the top 10% is found by
solving 0.10 = 1−F(x). Use a root-finding method to find x.

3. Use a quadrature rule to evaluate F(1157) — Appalachian State
University’s mean SAT score for entering first-year students in 2021.2

4. Use an interpolating polynomial to approximate F(x) for x ∈ [1100,1500].

2From the SAT Suite of Assessments Annual Report, The College Board.
2From the College Admission Scores website.
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A Bit Adder in Excel

Project: Adding Bits in Excel

1. Implement the one-bit adder in
Excel using IF-THEN statements
and AND, OR, and NOT functions.

2. Test your design with all 8 triples
of 1-bit values.

3. Make an eight-bit adder with
carries.

4. Test your design with 10 random
pairs of 8-bit numbers.

5. Develop a mathematical model for
the cost of computing the sum of
two eight-bit values.

a"

XOR$

F(a,b,c0)%=%(s,c1)%

b"

s" c1"

c0"

OR$

AND$

AND$XOR$

a$ b$ c0"
0% 0% 0%

0% 0% 1%

0% 1% 0%

0% 1% 1%

1% 0% 0%

1% 0% 1%

1% 1% 0%

1% 1% 1%

s$ c1"
0% 0%

1% 0%

1% 0%

0% 1%

1% 0%

0% 1%

0% 1%

1% 1%

One-Bit Adder with Carry
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The Collatz Conjecture Project

Lothar Collatz’s Proposition
Lothar Collatz posed a problem in 1937 that is quite simple to state, but that
still eludes proof. For any positive integer n, define the sequence

a1 = n and ak+1 =

{
1
2 ak if ak is even

3ak +1 if ak is odd
for k > 1.

Collatz conjectured the sequence would always reach 1 no matter the starting
value n ∈ N.

Conjecture (Collatz’s 3n+1 Problem)

For every n ∈ N, there is a k ∈ N such that the sequence above has ak = 1.

Currently. . .

The conjecture has been verified for all starting values up to 87 ·260 ≈ 1020.
Read “The 3x+1 Problem” by J. Lagarias (January 1, 2011 version) and check
Eric Roosendaal’s web site http://www.ericr.nl/wondrous/.

http://www.ericr.nl
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The Collatz Conjecture

Project

1. Write a program, Collatz, that determines the total stopping time of a
starting value n. That is, given a1 = n, find the first k such that ak = 1.
Define Collatz(n) = k.

2. Explain why Collatz(2m) = m.

3. Generate a point-plot of the sequence [n,Collatz(n)] for n = 1 to 100,000.

4. Use your graph to find the maximum value of Collatz(n) for n from 1 to
100,000.

5. Which initial value n≤ 106 produces the largest total stopping time?
(Careful! For example, Collatz(159,487) = 183, but before a183 = 1, this
sequence hits a67 = 17,202,377,752, a value that very much overflows an
unsigned 32-bit integer.)

6. Report on the history of Collatz’s conjecture.

Extra for Experts: Prove that Collatz(2mn) = m+Collatz(n).
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The CORDIC Algorithm

Background

In 1959, Jack Volder designed a way to compute trigonometric functions
very quickly, the CORDIC algorithm,3 while working on digitizing the
navigation system of the B58 Hustler, the first Mach 2-capable super-
sonic bomber. During the ’70s, John Walther extended CORDIC to
compute exponentials, logs, and hyperbolic trigonometric functions. The
algorithm became the standard for calculators (using BCD).

CORDIC Recurrence Equations

xk+1 = xk−2−kmδk yk

yk+1 = yk +2−k
δk xk

zk+1 = zk−δk σk

where m = 1 (trig), 0 (arith), or −1 (hypertrig), δk is ±1, and σk is a scaling

factor.

2Jack Volder, “The CORDIC Computing Technique,” 1959 Proceedings of the
Western Joint Computer Conference, pp. 257–261; and,
—, “The Birth of CORDIC,” J. VLSI Signal Proc. 25, 2000, pp. 101–105.
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The CORDIC Parameters

Parameter Choices

Rotation Mode Vectoring Mode

δk = sgn(zk) (zk → 0) δk =−sgn(yk) (yk → 0)

m = 1 ⟨x0, y0, z0⟩= ⟨K,0,θ⟩ ⟨x0, y0, z0⟩= ⟨x, y, 0⟩
σk = tan−1(2−k) xn→ cos(θ); yn→ sin(θ) zn→ tan−1(y/x)

m = 0 ⟨x0, y0, z0⟩= ⟨x, 0, z⟩ ⟨x0, y0, z0⟩= ⟨x, y, 0⟩
σk = 2−k yn→ x× z zn→ y/x

m =−1 ⟨x0, y0, z0⟩= ⟨K′, 0, θ⟩ ⟨x0, y0, z0⟩= ⟨x, y, 0⟩
σk = tanh−1(2−k) xn→ cosh(θ); yn→ sinh(θ) zn→ tanh−1(y/x)⟩

(some σk repeated) ⟨x0, y0, z0⟩= ⟨K′, 0, θ⟩ ⟨x0, y0, z0⟩= ⟨w+1, w−1, 0⟩
(k = 4,13,40,121, . . .) xn + yn→ eθ zn→ 1

2 ln(w)

K =
n
∏
j=0

cos(σk), K′ =
n
∏
j=0

cosh(σk)
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CORDIC in Maple

CORDIC Trigonometric Functions with Maple
CORDIC[Trig] := proc(t)

local n, K, x, y, z, j, del;

n := 47;

K := cos(arctan(1.0));

for j to n-1 do

K := K.cos(arctan(2.− j))

end do;

(x[1], y[1], z[1]) := (K, 0, evalf(t));

for j to n+1 do

del := sign(z[j]);

if del = 0 then del := 1 end if;

x[j+1] := x[j] - del.y[j].2.− j+1;

y[j+1] := y[j] + del.x[j].2.− j+1;

z[j+1] := z[j] - del.arctan(2.− j+1);

end do;

return (fnormal([x[j], y[j], z[j]]));

end proc:
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The CORDIC Project

Project

1. Modify the Maple program CORDIC[Trig] to compute arctan(θ).

2. Write a Maple program CORDIC[HyperTrig] that computes hyperbolic
trigonometric functions using CORDIC.

3. Write a Maple program CORDIC[Exp] that computes the exponential
function using CORDIC.

4. Write a Maple program CORDIC[Ln] that computes the logarithmic
function using CORDIC.

5. Report on the complex number basis of the CORDIC algorithm.

6. Create a presentation on the history of the CORDIC algorithm.

Extra for Experts:
Write a single program that computes all possible CORDIC outputs.
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The Cost of Computing a Determinant

Project: The Computation Cost of a Determinant

1. a. Define a function in Maple that produces an arbitrary square matrix:
> M := n→ Matrix(n,n, symbol=a):

b. Define a shortcut function det for determinant:
> det := A→ LinearAlgebra[Determinant](A):

c. Define a function for calculating the computation cost of a
determinant, ignoring finding subscripts:
> Cost := expr→ subs(subscripts = 0, codegen[cost](expr)):

d. Test your functions with:
> A := M(2):

> A, det(A), Cost(det(A));

2. Write a loop that computes the cost of a 1×1 determinant up to a
10×10 determinant. (A 10×10 determinant can take nearly 20 minutes.)

3. Develop a mathematical model for the cost of computing a
determinant in terms of its dimension n.
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Space Shuttle Acceleration

Space Shuttle Acceleration: The Situation3

The Space Shuttle had three phases from ignition to achieving orbit. The first phase
began by the shuttle lifting off the launch pad using solid rocket boosters (SRBs) to
accelerate extremely quickly. At approximately two minutes, the SRBs were separated
and fell back to Earth.

The second phase began with SRB separation and lasted approximately 6.5 minutes.
The shuttle speed increased to 17,500 mph — the speed needed to achieve orbit.
(Note this speed is a good deal less than the Earth’s escape velocity of 25,000 mph.)

The third phase began at about 9 minutes when the fuel external tank was jettisoned
and the shuttle entered orbit.

NASA’s data (next pg) lists the time, altitude, and velocity for STS-121 from July 4,
2006.

Project.

1. Using different divided difference formulas, compute and graph the shuttle’s
acceleration. Compare the results from each method.

2. Determine the maximum acceleration and its time.

3. Approximate the acceleration when the shuttle entered orbit at 9 minutes.

4. Explain why the shuttle’s velocity cannot be computed from ∆Altitude/∆time.

3Adapted from NASA’s “Space Shuttle Ascent.”
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Space Shuttle Acceleration, II

The Data

Time Altitude Velocity Time Altitude Velocity

(s) (m) (m/s) (s) (m) (m/s)

0 0 0 280 105,321 2651

20 1,244 139 300 107,449 2915

40 5,377 298 320 108,619 3203

60 11,617 433 340 108,942 3516

80 19,872 685 360 108,543 3860

100 31,412 1026 380 107,690 4216

120 44,726 1279 400 106,539 4630

140 57,396 1373 420 105,142 5092

160 67,893 1490 440 103,775 5612

180 77,485 1634 460 102,807 6184

200 85,662 1800 480 102,552 6760

220 92,481 1986 500 103,297 7327

240 98,004 2191 520 105,069 7581

260 102,301 2417
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Commissioner Loeb’s Demise

The Situation4

Commissioner Loeb was murdered in his office. Dr. “Ducky” Mallard,
NCIS coroner, measured the corpse’s core temperature to be 90◦F at
8:00 pm. One hour later, the core temperature had fallen to 85◦F.
Looking through the HVAC logs to determine the ambient temperature,
Inspector Clouseau discovered that the air conditioner had failed at 4:00
pm; the Commissioner’s office was 68◦F then. The log’s strip chart shows
Loeb’s office temperature rising at 1◦F per hour after the AC failure; at
8:00 pm, it was 72◦F.

Inspector Clouseau believes Snidely Whiplash murdered the
Commissioner, but Whiplash claims he was being interviewed by Milo
Bloom, staff reporter of the Bloom Beacon, at the time. Bloom’s
interview started at 6:30 pm and lasted until 7:15. Whiplash’s lawyer,
Horace Rumpole, believes he can prove Snidely’s innocence.

4Adapted from A Friendly Introduction to Numerical Analysis by Brian Bradie.
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Commissioner Loeb’s Demise

First Steps

1. The office temperature is Tambient = 72+ t, where t = 0 is 8:00 pm.

2. Newton’s Law of Cooling applied to the corpse’s temperature gives

dT
dt

=−k(T −Tambient) =−k(T − t−72) with T0 = 90.

3. A little differential equation work (with an integrating factor) yields

T (t) =
[

72+ t− 1
k

]
+ e−kt ·

[
18+

1
k

]
.

4. To find k, use the other data point. Set T (1) = 85◦F, then solve for k.

5. Last, solve T (tD) = 98.6 for tD, the time of death.
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Commissioner Loeb’s Demise

Project

1. Using the four methods, Bisection, Newton, Secant, and Regula Falsi:

a. Find the value of k using First Step 4.

b. Find td , the time of death of Commissioner Loeb, from First Step 5.

c. What was the temperature of the Commissioner’s office at tD?
d. How does error in the value of k effect error in the computation of

tD?

2. Compare the four methods and their results.

3. Graph T (t) over the relevant time period.

4. Chief Inspector Charles LaRousse Dreyfus answers the press’s questions:
• Is Inspector Clouseau right?
• Could Snidely Whiplash have killed Commissioner Loeb?
• Will Horace Rumpole get another client off?
• Will Milo Bloom win a Pulitzer?
• Will Bullwinkle finally pull a rabbit out of his hat?
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Wilkinson’s Perfidious Polynomial
In 1963, James Wilkinson created a polynomial to illustrate numerical
difficulties in computing roots.5 His polynomial is:

W (x) = x20

−210 x19

+20615 x18

−1256850 x17

+53327946 x16

−1672280820 x15

+40171771630 x14

−756111184500 x13

+11310276995381 x12

−135585182899530 x11

+1307535010540395 x10

−10142299865511450 x9

+63030812099294896 x8

−311333643161390640 x7

+1206647803780373360 x6

−3599979517947607200 x5

+8037811822645051776 x4

−12870931245150988800 x3

+13803759753640704000 x2

−8752948036761600000 x
+2432902008176640000

0 5 10 15 20

-3!1012

-2!1012

-1!1012

1!1012

2!1012

3!1012

Plot Window: [−2,23]× [−3 ·1012,+3 ·1012]

5See: James H Wilkinson, “The Perfidious Polynomial,” in Studies in Numerical
Analysis, ed. G. Golub, 1984, MAA, pp. 3–28.
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Wilkinson’s Polynomial’s Roots

Red box: root of w(x)
Blue circle: root of wp(x) = w(x)+10−23x19
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Wilkinson’s Polynomial’s Roots

The Project

1. Describe what happens when trying find the root at x = 20 using
Newton’s method.

2. Describe what happens when trying find the root at x = 20 using
Halley’s method.

3. Discover what happens when the constant term is perturbed, i.e.,
investigate the roots of p(x) = w(x)+106.

4. Discover what happens when the x1 term is perturbed, i.e.,
investigate the roots of p(x) = w(x)+ x.



ICM 193 – 201

Bernoulli’s Method for Polynomial Roots

Bernoulli’s Method (1728)6

Let p(x) = xn +an−1xn−1 + · · ·+a0 be a polynomial (wolog assuming p is
monic) and let r be the root of p with the largest magnitude. If r is real and
simple, define the sequence {xk} recursively by

xk =−an−1 xk−1−an−2 xk−2−·· ·−a0 xk−n k = 1,2, . . .

x0 = 1, x−1 = x−2 = · · ·= x−n+1 = 0.

Then xn+1

xn
→ r.

• Bernoulli’s method works best when p has simple roots and r is not
“close” to p’s next largest root.

• “If the ratio does not tend to a limit, but oscillates, the root of greatest
modulus is one of a pair of conjugate complex roots.” (Whittaker &
Robinson, The Calculus of Observations, 1924.)

6Daniel Bernoulli, Commentarii Acad. Sc. Petropol. III. (1732).
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Deflation

Deflating a Polynomial

Let p(x) be a polynomial. If a root r of p is known, then the deflated
polynomial q(x) is

p1(x) =
p(x)
x− r

.

The coefficients of p1 are easy to find using synthetic division.

The Technique

1. Use Bernoulli’s method to find r, the largest root of p

2. Deflate p to obtain p1

3. Repeat to find all roots.

Problem: Since there is error in r’s computation, there is error in p1’s
coefficients. Error compounds quickly with each iteration.
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The Bernoulli Project

The Project

1. Expand Wilkinson’s “perfidious polynomial” into standard form

W (x) =
20

∏
k=1

(x− k) = anxn +an−1xn−1 + · · ·+a0.

2. Use 50 iterations of Bernoulli’s method to find the largest magnitude
root. What is the relative error?

3. Determine W1(x), the deflated polynomial using the root from 2.

4. Use 50 iterations of Bernoulli’s method to find the largest magnitude
root of W1(x). What is the relative error?

5. Determine W2(x), the deflated polynomial using the root from 4.

6. Use 50 iterations of Bernoulli’s method to find the largest magnitude
root of W2(x). What is the relative error?

7. Discuss the propagation of error in the deflations.
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The Fourier Power Spectrum

Calculating the Power Spectrum of a Signal
The Power Spectrum of a signal f gives the amount of power of a specific
frequency component in the signal. The value at the frequency ω is given by

P(ω) =

√
a2

ω ( f )+b2
ω ( f )

where aω ( f ) and bω ( f ) are the Fourier coefficients of f at the frequency ω.
The Fourier coefficients a and b are computed with the integrals (ω ≥ 1)

aω ( f ) =
1
π

∫
π

−π

f (t)cos(ωt)dt and bω ( f ) =
1
π

∫
π

−π

f (t)sin(ωt)dt.

Square Wave SW (t) = |sin(2t)|/sin(2t)

Spectrum Graph of SW

The Spectrum Plot shows the power level at each frequency.
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The Fourier Power Spectrum, II
The Project: Produce a Spectrum Plot of the Square Wave
We will use numerical integration to compute the spectrum of the square wave
SW (t) = |sin(3t)|/sin(3t).

1. Choose a method from: midpoint, trapezoid, Simpson’s.

2. Use your method to numerically integrate P(ω) for ω = 1..100.

3. Use Maple to create a list, Spectrum, of lines [[k,0], [k,P(k)]] for k = 1..100.

4. Graph the list with plot
[{
Spectrum

}
, thickness = 3

]
.

5. Change the numerical integration method to either Gauss quadrature or
Gauss-Kronrod quadrature.

6. Recompute the power spectrum and its graph. Do the spectrum values
change? Is it faster or slower?

Extra for Experts

1. Show that a(k) = 0 for k ≥ 1. (Hint: Integrals of even & odd functions.)

2. Then conclude that P(k) = |b(k)| for k ≥ 1.

3. Last, demonstrate that b(k) = 0 unless k = 3 (mod 6).7

7Extended Project: Determine this condition for SWn(t) = |sin(nt)|/sin(nt).
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Spline Fit to a Transition Curve

Transition Curves
A transition curve is a section of highway or railroad track used to go from a
straight section into a curve. A transition curve is designed to prevent sudden
changes in lateral acceleration, which would occur with a circular segment, by
smoothly transitioning into and out of a curve. The basic transition curve
parametric function T (t) uses the Fresnel sine and cosine integrals

C(t) =
∫ t

0
cos
(

1
2 π t2

)
dt and S(t) =

∫ t

0
sin
(

1
2 π t2

)
dt

to give T (t) = [C(t),S(t)]. These integrals do not have elementary antideriv-
atives, and must be evaluated numerically.
A segment from the spiral T forms a transition
curve which will provide a smooth transition without
a sudden change in lateral acceleration.
Graph C and S to see their respective behaviors.

This project will investigate using splines to
lay out a roadbed.
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Spline Fit to a Transition Curve, II

Spline Fitting a Transition Curve for a Roadbed

Two roads are perpendicular and need to be con-
nected by a curve. We’ll blend two transition curves
to make the road. One curve will start at A and
turn toward the north until B. The second transition
curve will start at C and turn west meeting the first
at B. The two curves’ tangents match at B.
We will compute waypoints along the centerline us-
ing the two transition curves, then fit a cubic spline
through the data-points to lay out the roadbed to
make surveying and construction reasonable. Use
the data table below to determine the cubic spline.

Transition Curve Coordinates

A = (0.0, 0.0) (0.18, 0.003) (0.35, 0.02)

(0.52, 0.08) B = (0.66, 0.18) (0.75, 0.30)

(0.80, 0.47) (0.82, 0.65) C = (0.83, 0.82)
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The End

Whew. After all that, it’s time to sit down. . .
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