TEXTBOOKS IN MATHEMATICS

INTRODUCTION TO COMPUTATIONAL MATHEMATICS AN OUTLINE

William C. Bauldry

A CHAPMAN \& HALL BOOK

Introduction To
 Computational Mathematics

Textbooks in Mathematics

Series editors:
AI Boggess, Kenneth H. Rosen

Modeling Change and Uncertainty
Machine Learning and Other Techniques
William P. Fox and Robert E. Burks

Abstract Algebra

A First Course, Second Edition
Stephen Lovett
Multiplicative Differential Calculus
Svetlin Georgiev, Khaled Zennir
Applied Differential Equations
The Primary Course
Vladimir A. Dobrushkin

Introduction to Computational Mathematics: An Outline William C. Bauldry
https://www.routledge.com/Textbooks-in-Mathematics/book-series/CANDHTEXBOOMTH

Introduction To
 Computational Mathematics:
 An Outline

William C. Bauldry

CRC Press
Taylor \& Francis Group
Boca Raton London New York
CRC Press is an imprint of the
Taylor \& Francis Group, an informa business
A CHAPMAN \& HALL BOOK

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742
and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
(C) 2023 William C. Bauldry

CRC Press is an imprint of Taylor \& Francis Group, LLC
Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk
Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.
ISBN: 9781003299257 (ebk)
DOI: 10.1201/9781003299257
Publisher's note: This book has been prepared from camera-ready copy provided by the authors.
Cover photos: Mount Field National Park, Tall Trees Walk, Tasmania. (c) WmCB, 2018

Introduction to Computational Mathematics: An Outline

Photo (c) WmCB, 2015

$$
\begin{aligned}
& 1+1=3 \\
& \text { for large enough } \\
& \quad \text { values of } 1 . "
\end{aligned}
$$

Introduction to Computational Mathematics: An Outline

Contents
Preface viii
I. Computer Arithmetic 1
II. Control Structures 29
S I. Special Topics: Computation Cost and Horner's Form 64
III. Numerical Differentiation 70
IV. Root-Finding Algorithms 84
S II. Special Topics: Modified Newton's Method 113
V. Numerical Integration 117
VI. Polynomial Interpolation 140
S III. Case Study: TI Calculator Numerics 162
VII. Projects 175
VIII. References 200

Introduction to Computational Mathematics: An Outline

Photo (c) WmCB, 2015
On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?" ... I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question. - Charles Babbage Passages from the Life of a Philosopher, p. 67.

Preface: Is Computation Important?

A simple computational error can cause very serious problems.

The Mars Climate Orbiter Crash

Two teams used different units of measure when writing the Orbiter's software: NASA used the metric system, and Lockheed Martin used the Imperial system. Read NASA's Mars Climate Orbiter page.

The Ariane 5 Explosion

The European Space Agency's Ariane 5 rocket exploded 37 seconds after takeoff; the explosion was caused by an integer overflow in the software used for launching the rocket. Watch the launch video.

The Gulf War Dhahran "Scud" Missile Attack

The Patriot missile software measured time in binary and decimal based on the system clock that used 10th's of a second, a non-terminating fraction in binary. After running for over 100 hours, the system was inaccurate. Twenty-eight U.S. soldiers died when the system failed to track a Scud missile fired from Iraq. Read Michael Barr's "Lethal Software Defects: Patriot Missile Failure."

Preface: Three Factors of Computation

There are three aspects to keep in mind while studying computation. The first two are always in tension with each other:

Accuracy versus Efficiency

Accuracy concerns how much error occurs and how to control the error.
Efficiency concerns how much computation is needed to produce a result.

Stability is the third aspect to always keep in mind. In a stable computation, a small change in inputs produces only a small change in outputs. As a counterpoint, investigate instability in a "Lorenz attractor."

Starting at $[1,1,1]$.

Starting at $[-1,-2,-3]$.

Preface: A Computational Mathematics Course

This slide deck was developed while teaching Appalachian State's MAT 2310, Computational Mathematics (3 cr). The course was designed to introduce numerical analysis and give students experience with basic programming structures in a mathematical environment. A sample syllabus is as follows:

1. Computer Arithmetic 2 weeks 4. Root-Finding Algorithms ... 3 weeks
2. Control Structures 2 weeks 5. Numerical Integration 2 weeks
3. Numerical Differentiation .. 3 weeks 6. Polynomial Interpolation ... 2 weeks Midterm Exam Team Project Posters 1 week

Final Exam
Programming was done with the computer algebra system Maple, to easily adjust precision, and with Python. The Special Topics and Case Study come in as time allows. A selection of group projects appears at the end of this Outline.

Thanks go to the students of MAT 2310 who lived through the development of both a new course and these slides. Many thanks also go to my colleagues Greg Rhoads, René Salinas, and Eric Marland who co-designed the course and gave great feedback during the adventure.

- WmCB, Aug 2022

I. Computer Arithmetic

Sections

1. Scientific Notation 2
2. Converting to Different Bases 3
3. Floating Point Numbers 8
4. IEEE-754 Floating Point Standard 10
5. Maple's Floating Point Representation 18
6. Error 20
Exercises 27

I. Computer Arithmetic: Scientific Notation

Definitions of Scientific Notation

Normalized: Any numeric value can be written as

$$
d_{0} \cdot d_{1} d_{2} d_{3} \ldots d_{n} \times 10^{p}
$$

where $1 \leq d_{0} \leq 9$.
Engineering: Any numeric value can be written as

$$
n \cdot d_{1} d_{2} d_{3} \ldots d_{m} \times 10^{q}
$$

where $1 \leq n \leq 999$ and q is a multiple of 3 .

Examples (NIST's Values of Constants)

- Speed of light in a vacuum: $2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- Newtonian constant of gravitation: $6.67384 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$
- Avogadro's number: $6.022141 \times 10^{-23} \mathrm{~mol}^{-1}$
- Mass of a proton: $1.672621777 \times 10^{-27} \mathrm{~kg}$
- Astronomical unit: $92.95580727 \times 10^{6} \mathrm{mi}$

Conversions

Basic Base Transmogrification: Integers

> Binary \rightarrow Decimal
> (Vector version)
> Think of the binary number as a vector of 1's and 0's. Use a dot product to convert to decimal.
> 1. $x_{2}=101110$
> 2. $x_{10}=$
> $\left\langle\begin{array}{llllll}1 & 0 & 1 & 1 & 1 & 0\end{array}\right\rangle$
> $\cdot\left\langle 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}\right\rangle$
> 3. $x_{10}=2^{5}+2^{3}+2^{2}+2^{1}$
> $=46$

Decimal \rightarrow Binary
(Algebra version)
Successively compute the bits (from right to left)

1. bit $=x \bmod 2$
then set $x=\lfloor x / 2\rfloor$
2. Repeat until $x=0$
E.g., $x_{10}=46$

$$
\begin{aligned}
& b_{0}=0 \text {; then set } x=23 \\
& b_{1}=1 ; \quad x=11 \\
& b_{2}=1 \text {; } \\
& x=5 \\
& b_{3}=1 \text {; } \\
& x=2 \\
& b_{4}=0 \text {; } \\
& x=1 \\
& b_{5}=1 ; \\
& x=0
\end{aligned}
$$

Whence $x_{2}=101110$

Conversions

Basic Base Transmogrification: Fractions

Decimal \rightarrow Binary
(Algebra version)
Successively compute the bits (from left to right)

1. bit $=\lfloor 2 x\rfloor$
then set $x=\operatorname{frac}(2 x)$
2. Repeat until $x=0$ (or when
reaching maximum length)
E.g., $x_{10}=0.71875$
$b_{-1}=1$; then set $x=0.43750$
$b_{-2}=0 ; \quad x=0.87500$
$b_{-3}=1 ; \quad x=0.75000$
$b_{-4}=1 ; \quad x=0.50000$
$b_{-5}=1 ; \quad x=0.0$ Stop
Whence $x_{2}=0.10111$

Conversions

Terminating Expansions?

When does a fraction's expansion terminate?
Base 10: A decimal fraction terminates when $r=\frac{n}{10^{p}}=\frac{n}{2^{p} \cdot 5^{p}}$.
Base 2: A binary fraction terminates when $r=\frac{m}{2^{p}}$.

Examples

$$
\begin{aligned}
& \text { 1. } \frac{1}{10}=0.1_{10}=0.0 \overline{0011}_{2} \\
& \text { 2. } \frac{1}{3}=0 . \overline{3}_{10}=0 . \overline{01}_{2} \\
& \text { 3. } \sqrt{2} \doteq 1.4142135623730950488_{10} \doteq 1.0110101000001001111_{2} \\
& \text { 4. } \pi \doteq 3.1415926535897932385_{10} \doteq 11.001001000011111101_{2}
\end{aligned}
$$

Conversions

Examples (Convert a Repeating Binary Expansion)

Convert $n=0.0101101101 \cdots=0.0 \overline{101}_{2}$ to decimal.

1. Convert the repeating block to decimal:

$$
101_{2}=5_{10}
$$

2. Rewrite n in "powers-of-two" notation:

$$
n=5 \cdot 2^{-4}+5 \cdot 2^{-7}+5 \cdot 2^{-10}+5 \cdot 2^{-13}+\cdots
$$

3. Express n as a geometric series:

$$
n=5 \cdot 2^{-4} \cdot \sum_{k=0}^{\infty} 2^{-3 k}
$$

4. And sum the series:

$$
n=5 \cdot 2^{-4} \cdot \frac{1}{1-2^{-3}}=\frac{5}{14}
$$

Binary Coded Decimal

BCD

The digits 0 to 9 can be represented with four binary bits:

X	X	X	X
8	4	2	1

For example, 93_{10} would be

Advantages

- Eliminates some repeating expansions
- Rounding is simpler
- Displaying values is easier

Disadvantages

- Fewer numbers per 8 bits ($100 / 256 \approx 39 \%$)
- Complicated arithmetic routines
- Slower to compute

Nearly all calculators use BCD formats.

Floating Point Numbers

Definition (Floating Point Representation)

A number x is represented (and approximated) as

$$
x \doteq \sigma \times f \times \beta^{e-p}
$$

where

$$
\sigma: \operatorname{sign} \pm 1, \quad f: \text { mantissa, } \quad \beta: \text { base, usually } 2,10, \text { or } 16
$$ e : biased exponent (shifted), $\quad p$: exponent's bias (shift)

The standard floating point storage format is

σ	e	f

Exponent Bias

The bias value is chosen to give equal ranges for positive and negative exponents without needing a sign bit. E.g., for an exponent with

- 8 bits: $0 \leq e \leq 255=2^{8}-1$. Use $p=2^{8} / 2-1$ gives an exp range of

$$
-127 \leq e-127 \leq 128
$$

- 11 bits: $0 \leq e \leq 2047=2^{11}-1$. Use $p=2^{11} / 2-1=1023$ gives

$$
-1023 \leq e-1023 \leq 1024 .
$$

Samples

Examples

1. $-3.95=(-1)^{1} \times 0.1234375 \times 2^{21-16}$

So $\sigma=1, \quad f=0.1234375, \quad \beta=2, \quad e=21, \quad$ and $\quad p=16$.
Note: $(-1)^{1} \times 0.1234375 \times 2^{21-16}=-3.950$, so err $=0$.

Storage format: | 1 | 21 | 0.1234375 |
| :--- | :--- | :--- |

2. $11 / 3=(-1)^{0} \times 0.2291666667 \times 16^{16384-16383}$

So $\sigma=0, \quad f=0.2291666667, \quad \beta=16, \quad e=16384, \quad$ and $\quad p=16383$.
Note: $(-1)^{0} \times 0.2291666667 \times 16^{16384-16383}=3.6666666672$,
so $\mathrm{err}=5 . \overline{3} \cdot 10^{-10}$.
Storage format: 0016384
3. $2^{10}=1024=(-1)^{0} \times 0.250 \times 16^{66-63}$

So $\sigma=0, \quad f=0.250, \quad \beta=16, \quad e=66, \quad$ and $\quad p=63$.
Note: $(-1)^{0} \times 0.250 \times 16^{66-63}=1024.0$, so $\mathrm{err}=0$.

Storage format: | 0 | 66 | 0.2500000000 |
| :--- | :--- | :--- |

IEEE Standard for Floating-Point Arithmetic

Definition (IEEE-754)

Normalized Floating Point Representation (Binary)
Single precision: $x \doteq(-1)^{\sigma} \times\left(1 .+f_{[23]}\right) \times 2^{e^{[8]}-127}$
(32 bit)

1	0	1	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Double precision: $x \doteq(-1)^{\sigma} \times\left(1 .+f_{[52]}\right) \times 2^{e_{[11]}-1023}$
(64 bit)

$\left.\begin{array}{|l|}\hline 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Online Floating-Point Converter

IEEE Standard for Floating-Point Arithmetic, II

Single Precision Bit Patterns

Pattern			Value
$0<e<255$			$n=(-1)^{\sigma} \times 2^{e-127} \times 1 . f$ normal number
$e=0$	$f=0$ all bits are zero		$n=(-1)^{\sigma} \times 0.0$ signed zero
	$f \neq 0$ at least 1 nonzero bit		$n=(-1)^{\sigma} \times 2^{-126} \times 0 . f$ subnormal number
$e=255$	$f=0$	$\sigma=0$	+INF plus infinity
		$\sigma=1$	-INF minus infinity
	$f \neq 0$		$\mathrm{NaN} \quad$ Not-a-Number

Big and Small \& Gaps

IEEE-754 Largest and Smallest Representable Numbers

Precision	Digits	Max Exp	Smallest \#	Largest \#
Single	≈ 9	≈ 38.2	$\approx 1.18 \cdot 10^{-38}$	$\approx 3.4 \cdot 10^{38}$
Double	≈ 17	≈ 307.95	$\approx 2.225 \cdot 10^{-307}$	$\approx 1.798 \cdot 10^{308}$

Gaps in the Floating Point Number Line

The size of the gap between consecutive floating point numbers gets larger as the numbers get larger.

Each tick mark represents one floating point number.

Machine Epsilon

Definition

The machine epsilon ε is the largest value such that

$$
1+\varepsilon=1
$$

for a given numeric implementation.

Example (Single Precision [using Java])

```
wmcb: cat machineEpsilon.java
class mEps {
public static void main(String[] args) {
    float machEps = 1.0f;
    do {
        machEps /= 2.0f;
    } while ((float)(1.0+(machEps/2.0)) != 1.0);
    System.out.println("Calculated machine epsilon:"+machEps);
    }
}
wmcb: javac machineEpsilon.java
wmcb: java mEps
```

Calculated machine epsilon: 1.1920929E-7
$\Longrightarrow \varepsilon_{S} \approx 1.192 \cdot 10^{-7}$

Machine Epsilon, II

Example (Double Precision [using Java])

```
wmcb: cat machineEpsilonD.java
class mEpsD {
public static void main(String[] args) {
    double machEps = 1.Od;
    do {
        machEps /= 2.0d;
    } while ((double)(1.0+(machEps/2.0)) != 1.0);
    System.out.println("Calculated machine epsilon:"+machEps);
    }
}
wmcb: javac machineEpsilonD.java
wmcb: java mEpsD
Calculated machine epsilon: 2.220446049250313E-16 }\Longrightarrow\quad\Longrightarrow\quad\mp@subsup{\varepsilon}{d}{}\approx2.22\cdot1\mp@subsup{0}{}{-16
```

Single Precision	Double Precision
$\varepsilon_{s} \approx 1.192 \cdot 10^{-7}$	$\varepsilon_{d} \approx 2.22 \cdot 10^{-16}$

Machine Epsilon, III

Example (Using Python 3)

```
>>> macEps = 1.0
>>> while (1.0 + macEps) != 1.0:
    macEps = macEps/2.0
```

>>> macEps
$1.1102230246251565 \mathrm{e}-16$
>>>
>>> import numpy as np
>>> macEpsL = np.longdouble(1.0)
>>> while ($1.0+$ macEpsL) != 1.0:
$\operatorname{macEpsL}=\operatorname{macEpsL} / 2.0$
>>> macEpsL
$5.42101086242752217 e-20$
>>>
>>> np.finfo(np.longdouble)
finfo(resolution=1.0000000000000000715e-18,
$\min =-1.189731495357231765 \mathrm{e}+4932$, $\max =1.189731495357231765 \mathrm{e}+4932$,
dtype=float128)

Note: Python's float defaults to double precision.

Large Value Floating Point Gap

Example (Double Precision [using Java])

- Approximate the gap to the next floating point value above 10^{30}.

```
wmcb: cat FPGap.java
class BigGap {
public static void main(String[] args) {
    float gap = 1e23f;
    float n = 1e30f;
    do {
        gap /= 2.0;
        } while ((float)(n+(gap/2.0)) != n);
    System.out.println("Approximate gap: "+eps);
    }
}
wmcb: javac FPGap.java
wmcb: java BigGap
    Approximate gap: 5.0E22
```


Properties

Floating Point Arithmetic Properties

Commutative: Addition is commutative:

$$
n_{1}+n_{2}=n_{2}+n_{1}
$$

Multiplication is commutative:

$$
n_{1} \times n_{2}=n_{2} \times n_{1}
$$

Nonassociative: Addition is not associative:

$$
\left(n_{1}+n_{2}\right)+n_{3} \neq n_{1}+\left(n_{2}+n_{3}\right)
$$

Multiplication is not associative:

$$
\left(n_{1} \times n_{2}\right) \times n_{3} \neq n_{1} \times\left(n_{2} \times n_{3}\right)
$$

Nondistributive: Multiplication does not distribute over addition:

$$
n_{1} \times\left(n_{2}+n_{3}\right) \neq\left(n_{1} \times n_{2}\right)+\left(n_{1} \times n_{3}\right)
$$

Maple's Floating Point Representation

Maple's Floating Point Implementation

Maximum exponent $=9223372036854775806$
Minimum exponent $=-9223372036854775806$
Maximum "float" $=1 . \times 10^{9223372036854775806}$
Minimum "float" $=1 . \times 10^{-9223372036854775806}$
Maximum digits $=38654705646$
Maximum binary power $=4611686018427387903$

```
Example (Maple's Floating Point Structure)
> N := evalf(Pi, 20):
    dismantle(N)
    FLOAT(3): 3.1415926535897932385
    INTPOS(6): 31415926535897932385
    INTNEG(2): -19
```


Floating Point Rounding

IEEE-754 Rounding Algorithms ${ }^{1}$

Rounding to Nearest

- Round to nearest, ties to even
(default for binary floating-point)
- Round to nearest, ties to odd
- Round to nearest, ties away from zero (used by Maple and MATLAB)

Directed Roundings

- Round toward 0 - truncation
- Round toward $+\infty$ - rounding up or ceiling: $\lceil x\rceil$
- Round toward $-\infty$ - rounding down or floor: $\lfloor x\rfloor$

Team Project: Implement Stochastic Rounding in Maple or Python.

Error

Defining Error

Absolute Error: The value err $_{\text {abs }}=\mid$ actual - approximate \mid Relative Error: The ratio err $_{\text {rel }}=\frac{\mid \text { actual }- \text { approximate } \mid}{\mid \text { actual } \mid}=\frac{e r r_{\text {abs }}}{\mid \text { actual } \mid}$

Example (Weighty Thoughts)

A long-tailed field mouse normally weighs up to about 50 g . Suppose a lab-tech makes an error of 2.5 g (\approx a penny) when weighing a mouse. The relative error is

$$
e r r_{r e l}=\frac{2.5 \mathrm{~g}}{50 \mathrm{~g}}=5 \%
$$

A mature African bush elephant normally weighs about 6.5 tons. Suppose a zookeeper makes an error of 50\# (≈ 7-yr-old boy) weighing an elephant. The relative error is

$$
e r r_{r e l}=\frac{50 \#}{13000 \#} \doteq 0.4 \%
$$

Error Accumulates

Adding Error

Add $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{10^{6}}$ forward and backward with 6 digits.
Maple
Digits:=6:
$\mathrm{N}:=10^{6}$:

```
Sf :=0;
for i from 1 to \(N\) do
    Sf :=Sf+(1.0/i);
    end do:
```

 Sf ;
 10.7624
 $\mathrm{Sb}:=0$;
for j from N to 1 by -1 do $\mathrm{Sb}:=\mathrm{Sb}+(1.0 / j)$;
end do:
Sb ;
14.0537

The correct value of $\sum_{k=1}^{10^{6}} \frac{1}{k}$ to 6 significant digits is 14.3927 . relative $\operatorname{error}\left(S_{f}\right) \approx 25.2 \%, \quad$ relative $\operatorname{error}\left(S_{b}\right) \approx 2.4 \%$ What happened?

Error Accumulates

Subtracting Error

Solve for $x: 1.22 x^{2}+3.34 x+2.28=0$
The quadratic formula $r_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Using the formula directly:

$$
\begin{aligned}
b^{2} & =11.2 \\
4 a c & =11.1 \\
\sqrt{b^{2}-4 a c} & =0.32 \\
r_{+}, r_{-} & =-1.24,-1.50
\end{aligned}
$$

The relative error is $\approx 5 \%$.
"Rationalize the numerator" to eliminate a bad subtraction:

$$
R_{-}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{2 c}{-b+\sqrt{b^{2}-4 a c}}
$$

More Error Accumulates

Even Worse Subtraction Error

Solve for $x: 0.01 x^{2}-1.00 x+0.02=0$
Again, using the quadratic formula directly:

$$
\begin{aligned}
4 a c & =0.0008 \doteq 0.00 \\
\sqrt{b^{2}-4 a c} & \doteq 1.00 \\
r_{ \pm} & \doteq 100 ., 0.00
\end{aligned}
$$

(3-digit, 2-decimal precision) But the real roots are:

$$
R_{ \pm} \doteq 99.98,0.02
$$

The relative errors are err $_{\text {rel }} \approx 0.02 \% \& 100 \%!$

Again, "rationalize the numerator" to eliminate a bad subtraction:

$$
\begin{gathered}
R_{-}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{2 c}{-b+\sqrt{b^{2}-4 a c}} \\
\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \doteq 0.00 \quad \text { but } \frac{2 c}{-b+\sqrt{b^{2}-4 a c}} \doteq 0.02
\end{gathered}
$$

Accuracy v. Precision

On-Target v. Grouping

Accuracy: How closely computed values agree with the true value.
Precision: How closely computed values agree with each other.

Roundoff v. Truncation

Computational v. Formulaic

Roundoff: Error from floating point arithmetic (fixed number of digits)

Truncation: Error from formula approximation (dropping terms)

Examples

- Roundoff

$$
\begin{gathered}
\frac{6}{10}+\frac{5}{10}=\frac{11}{10} \Longleftrightarrow 1 .+1 . \stackrel{?}{=} 1 . \\
\frac{4}{10}+\frac{5}{10}+\frac{6}{10}+\frac{7}{10}+\frac{8}{10}=3 \Longleftrightarrow 0 .+1 .+1 .+1 .+1 . \stackrel{?}{=} 3 .
\end{gathered}
$$

- Truncation

$$
\sin (\theta)=\sum_{k=1}^{\infty} \frac{\theta^{2 k-1}}{(2 k-1)!} \Longleftrightarrow \sin (\theta) \approx \theta-\frac{1}{6} \theta^{3}
$$

$$
\tan (\theta)=\sum_{k=1}^{\infty}(-1)^{n} \frac{B_{2 n} n^{n}\left(1-4^{n}\right)}{(2 n)!} \theta^{2 n-1} \Longleftrightarrow \tan (\theta) \approx \theta+\frac{1}{3} \theta^{3}
$$

Landau Notation

"Big- O "

We use Landau's notation to describe the order of terms or functions:
Big- \mathscr{O} : If there is a constant $C>0$ such that $|f(x)| \leq C \cdot|g(x)|$ for all x near x_{0}, then we say $f=\mathscr{O}(g)$ [that's " f is 'big- O ' of $\left.g^{\prime \prime}\right]^{2}$

Examples

1. For x near 0 , we have $\sin (x)=\mathscr{O}(x)$ and $\sin (x)=x+\mathscr{O}\left(x^{3}\right)$.
2. If $p(x)=101 x^{7}-123 x^{6}+x^{5}-15 x^{2}+201 x-10$, then

- $p(x)=\mathscr{O}\left(x^{7}\right)$ as $x \rightarrow \infty$.
- $p(x)=\mathscr{O}(1)$ for x near 0 .

3. As $x \rightarrow \infty$, is $x^{n}=\mathscr{O}\left(e^{x}\right)$ for every $n \in \mathbb{N}$?
4. As $x \rightarrow \infty$, is $\ln (x)=\mathscr{O}\left(x^{1 / n}\right)$ for every $n \in \mathbb{N}$?

Exercises, I

Problems

Scientific Notation

1. Convert several constants at NIST to engineering notation.

Converting Bases
2. Convert to decimal: 101110, $101 \times 2^{10}, 101.0111,1110.0 \overline{01}$
3. Convert to binary (to 8 places): $10^{5}, 1 / 7,1234.4321$, $\pi, \sqrt{2}$.
4. Express 831.22 in BCD form.
5. Write the BCD number 100101100011.10000101 in decimal.
6. Investigate converting bases by using synthetic division.

Floating Point Numbers

7. Convert 31.3875_{10} to floating point format with base $\beta=10$ and bias $p=49$.
8. Convert from floating point format with base $\beta=2$ and bias $p=127$:

1	126_{10}	5141_{10}

9. Why is the gap between successive values larger for bigger numbers when using a fixed number of digits?
10. Give an example showing that floating point arithmetic is not distributive (mult over add).

Exercises, II

Problems

IEEE-754 Standard

11. Write 20/7 in single-precision format. In double-precision.
12. Convert the single-precision \# | 0 | 10000111 | $0010010 \ldots 0$ |
| :--- | :--- | :--- | to decimal.
13. Chart double-precision bit patterns.
14. Describe a simple way to test if a computation result is either infinite or NaN .
15. What is the purpose of using round to nearest, ties to even?
16. Explain the significance of the machine-epsilon value.

Error

17. The US Mint specifies that quarters weigh 5.670 g . What is the largest acceptable weight, if the relative error must be no more than 0.5% ?
18. Find the relative error when adding $1+\frac{1}{2}+\cdots+\frac{1}{10^{5}}$ using 5-digit arithmetic.
19. Show that $\cos (x)=\mathscr{O}(1)$ for x near 0 .
20. Let p be a polynomial with $n=\operatorname{degree}(p)$. Find k so that
a. $p(x)=\mathscr{O}\left(x^{k}\right)$ as $x \rightarrow \infty$.
b. $p(x)=\mathscr{O}\left(x^{k}\right)$ for $x \approx 0$.

II. Control Structures

Sections

1. Control Structures 30
2. A Common Example 36
3. Control Structures Syntax 38
4. Excel 38
5. Maple [Sage / Xcas] 41
6. MATLAB [FreeMat/Octave / Scilab] 44
7. C and Java 47
8. TI-84 51
9. R 54
10. Python 57
11. From Code to Flow Charts 59
Exercises 60
Reference Sheet Links 63

II. Control Structures: Flow

Flow Control

Conditional Statements. A condition determines an action:
If the condition is true, then do an action.
If the condition is not true, ${ }^{3}$ then do a different action.
E.g.,

- If a number is even, divide it by 2 . Otherwise mult by $3 \&$ add 1.
- If error is less than 10^{-5}, stop. If not, reapply Newton's method.

Repeating Blocks / Loops: Repeat an action a specified number of times (NB: Loops embed a conditional):

Count to a value doing an action each time.
E.g.,

- Add the first 20 prime numbers.
- Starting at $t=0 ; y_{0}=0$, use Euler's method to find $y(1)$ when $y^{\prime}=t$.

[^0]
Types of Conditional Statements

Basic Conditional Types

```
    Simple: IF condition THEN do action for true
    IF condition THEN do action for true ELSE do action for false
Compound: IF condition
    ELSE IF condition}2\mathrm{ THEN do action
    ELSE IF condition_ THEN do action}
    ELSE do actionn when all conditions are false
```


Example (NC 2011-2013 Tax Rate Schedule ${ }^{4}$)

IF your filing status is single;

and taxable income is more than:	but not over:	your tax is:
$\$ 0$	$\$ 12,750$	6% OF THE NC TAXABLE INCOME AMOUNT ON FORM D-400
$\$ 12,750$	$\$ 60,000$	$\$ 765+7 \%$ OF THE AMOUNT OVER $\$ 12,750$
$\$ 60,000$	\ldots	$\$ 4,072.50+7.75 \%$ OF THE AMOUNT OVER $\$ 60,000$

${ }^{4}$ In 2014, NC converted to a regressive "flat tax" currently at 5.25% (2021).

Types of Loops

Loop Types

Counting Loops: For loops perform an action a pre-specified number of times.

Condition Loops: While loops perform an action as long as a given condition is true.

Examples

- For each employee, calculate their monthly pay.
- For each integer i less than n, compute the i th number in the Fibonacci sequence.
- While the current remainder in the Euclidean algorithm is greater than 1 , calculate the next remainder.
- While the game isn't over, process the user's input.

Example: Collatz Flow Chart

Collatz Function

- Start with an integer greater than 1. If it's even, divide it by 2 . Otherwise, multiply it by 3 then add 1 . Repeat until the value reaches 1 counting the number of steps.

A program to calculate the number of steps requires a loop with a conditional inside.

XKCD: Collatz Conjecture

Example: Collatz - A Loop and a Conditional

Pseudocode

We see a conditional loop in the Collatz function's flow chart:
while (the term >1) do
Calculate the next term end do

There is an "if" statement inside the loop to calculate the new term:

If (the term is even) then
divide by 2
else
multiply by 3 , then add 1 end if

Putting these together gives:
Get the first term
Set the term counter to 1
while (the term >1) do
If (the term is even) then divide by 2
else multiply by 3 , then add 1
end if
Increment the term counter
end do
Return the term counter

Example: Euler's Method as a Loop

Euler's Method

The solution to a differential equation $y^{\prime}=f(x, y)$ can be approximated using the differential triangle. Calculate the next point from the current point $\left(x_{k}, y_{k}\right)$ by following the tangent line for a step $\Delta x=h$. Then the new point is

$$
\left(x_{k+1}, y_{k+1}\right)=\left(x_{k}+h, y_{k}+h \cdot y^{\prime}\left(x_{k}, y_{k}\right)\right) .
$$

Implement Euler's method as a loop:
Define the derivative function $y^{\prime}=f(x, y)$ Get the initial point $\left(x_{0}, y_{0}\right)$
Get the stepsize h
Determine the number of steps $n=(b-a) / h$
for i from 1 to n do
Compute $x_{k+1}=x_{k}+h$ and $y_{k+1}=y_{k}+h \cdot y^{\prime}\left(x_{k}, y_{k}\right)$ end do
Return the collection of points $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{n}$

Control Structures Example: Flowchart

A Common Sample Problem

1. List the squares of the first 5 integers showing which are even and which are odd.

- Use a for loop to step through the integers and an if-then conditional to test for even or odd.

Control Structures Examples: Diagram

Excel Control Structures

Conditional Statements

> If: = IF (condition, true action, false action)
[Can nest up to 7 IFs: $=\mathrm{IF}\left(\right.$ condition $_{1}, \operatorname{IF}\left(\right.$ condition $\left._{2}, \ldots, \ldots\right), \ldots$)] [But l've nested 12 deep without problems...]

Case: = CHOOSE (index, case_1, case_2, ...)
[Maximum of 29 cases) (see also: LOOKUP)]

Note

Many versions of Excel include Visual Basic for Applications (VBA), a small programming language for macros. VBA includes a standard if-then-else/elseif-end if structure. (See the Excel Easy web tutorial.)

Excel Control Structures

Loop Structures

For: N / A (must be programmed in VBA)

While: N / A (must be programmed in VBA)

View:

- Excel (Mac) website
- Excel (Win) website

Excel Control Structures Example

Maple Control Structures

Conditional Statements

If: if condition then statements;
else statements; end if
if condition ${ }_{1}$ then statements; elif condition 2 then statements; else statements; end if

Case: N/A (use piecewise or if-elif-end if)

Maple Control Structures

Loop Structures

For: for index from start_value|1 to end_value by increment|1 do
statements;
end do
for index in expression_sequence do
statements;
end do
While: while condition do
statements;
end do

View:

- Maple website
- Maple Online Help
(See also: the Sage, Xcas, and TI Nspire, Maxima, or Mathematica website.)

Maple Control Structures Example

MATLAB ${ }^{1}$ Control Structures

Conditional Statements

If: if condition; statements; else statements; end
if condition; statements; elseif condition; statements; else statements; end

```
Case: switch index
    case value1
        statements;
    case value2
        statements;
    otherwise
        statements;
    end
```


MATLAB / Octave / Scilab Control Structures

Loop Structures

For: for index = startvalue: increment: endvalue statements
end

While: while condition
statements
end

View:

- MATLAB website
- Octave website
- Scilab website
- FreeMat website

MATLAB Control Structures Example

```
octave-3.4.0:1>
> for j=1:1:5;
> k=j*j;
> if mod(k,2)== 0;
> printf("%d is even\n", k);
> else
> printf("%d is odd\n", k);
> end; % of if
> end; % of for
1 is odd
4 is even
9 is odd
16 is even
25 is odd
octave-3.4.0:2>
```


C / Java Control Structures

Conditional Statements

```
    If: if (condition) {statements}
    if (condition) {statements}
    else {statements}
Case: switch (index) {
    case 1: statements ; break;
    case 2: statements ; break;
    case n: statements ; break;
    default: statements }
```

(See also: Lua.)

C / Java Control Structures

Loop Structures
For: for (initialize; test; update) \{statements\}

While: while (condition) \{statements\} \leftarrow "entrance condition" loop do \{statements\} while (condition) \leftarrow "exit condition" loop

View:

- C reference card
- Java reference card

C Control Structures Example

```
#include <stdio.h>
main()
{ int i, j;
    for (i=1; i<= 5; i++)
    { j = i*i;
        if (( j% 2)==0)
                printf("%d is even\n", j);
        else
                printf("%d is odd\n", j);
    }
    return 0;
}
```


Java Control Structures Example

```
class cs_eg {
    public static void main(String[] args)
    {
    int i, j;
    for (i=1; i<= 5; i++)
    { j = i*i;
        if ((j % 2)==0)
            System.out.println(j+" is even");
        else
            System.out.println(j+" is odd");
    }
    }
}
```


TI-84 Control Structures

Conditional Statements

If: If condition: statement

If condition Then
statements
Else
statements
End

Case: N/A (Use a piecewise function or nested if statements.)

TI-84 Control Structures

Loop Structures

For: For (index, start_value, end_value [, increment]) statements End

While: While* condition
statements
End

Repeat** condition statements End
Loop while the condition is true; test condition at the beginning ${ }^{ *}$ Loop until the condition is true; test condition at the end

View:

- TI Calculator website
- TI-84 Guidebook links

TI-84 Control Structures Example

R Control Structures

Conditional Statements

```
            If: if(condition) {statements}
                if(condition)
{statements}
else
{statements}
```

Case: switch (index, list)

R Control Structures

Loop Structures

For: for (variable in sequence) \{statements\}

While: while* (condition) \{statements\}

```
repeat**
    {statements
    if (exit_condition) break
    statements}
```

* Loop while the condition is true; test condition at the beginning ** Loop until the condition is true; test condition inside the loop

View:

- The R Project for Statistical Computing homepage
- The Comprehensive R Archive Network - CRAN

R Control Structures Example

```
>for (j in 1:5){
+k= j^2
+ if (k%% 2 == 0) {
+ cat(k,"is even\n")}
+ else {
+ cat(k,"is odd\n")}
+ }
1 is odd
4 is even
9 is odd
16 is even
25 is odd
>
```


Python Control Structures

Conditional Statements

```
if if(condition) {statements}
if(condition)
{statements}
else
{statements}
```

case: switch (index, list)

View the Python website.

Python Control Structures Example

```
>>> for j in range(1, 6):
    k=j*j
    if (k%2) == 0:
        print(k, 'is even')
    else:
        print(k, 'is odd')
1 is odd
4 is even
9 is odd
16 is even
25 is odd
```

>>>

Note: Indentation is critical in Python.

From Code to a Flow Chart

Maple Loops

Build flow charts for the Maple code shown below:

```
マ Algorithm 1.
    \(n:=12\);
    \(r:=1\);
    for \(i\) from 2 to \(n\) do
    \(r:=r \cdot i\);
        end do:
    \(r\)
\[
\begin{aligned}
& \text { Algorithm } 2 \text {. } \\
& n:=12 ; \\
& R:=n ; \\
& j:=n-1 ; \\
& \text { while } j>1 \text { do } \\
& \quad R:=R \cdot j ; \\
& \quad j:=j-1 ; \\
& \quad \text { end do: } \\
& R ;
\end{aligned}
\]
```

What mathematical function are these routines calculating?

Exercises, I

Problems

1. Write an If-Then-ElseIf statement that calculates tax for a married couple filing jointly using the 2011 NC Tax Table (before the "Flat Tax").
a. In natural language
d. In MATLAB (Octave or Scilab)
b. In Excel
e. In C (Java, Python, or R)
c. In Maple
f. On a Tl-84
2. Implement the Collatz Flow Chart
a. In pseudocode
b. In Maple (as a function)
3. Write code that, given a positive integer n, prints the first n primes.
4. Give a Maple version of Euler's method.
5. Write nested for loops that fill in the entries of an $n \times n$ Hilbert matrix
a. In Maple
b. On a TI-84
6. How can a while loop be redesigned as a for loop?
7. How can a for loop be redesigned as a while loop?

Exercises, II

Problems

8. Make a flow chart for implementing the Euclidean algorithm to find the GCD of two positive integers p and q.
9. Write code using the Euclidean algorithm to find the GCD of two positive integers p and q.
10. Write a Maple or MATLAB function that applies the Extended Euclidean algorithm to two positive integers p and q to give the greatest common divisor $\operatorname{gcd}(p, q)$ and to find integers a and b such that $a p+b q=\operatorname{gcd}(p, q)$.
11. a. Make a flow chart for the Maple code shown in the Flow Chart

Problem worksheet.
b. What does the code do?
c. Convert the Maple statements to
i. MATLAB
ii. TI-84+

Exercises, III

Problems

12. The " 9 's-complement" of a number x is the value needed to add to x to have 9 's. E.g., the 9 's-complement of 3 is 6 ; of 64 is 35 ; etc.
a. Write a statement to calculate the 9 's-complement of an n-digit number y; call the result y_{9}.
b. Write an if-then statement that performs carry-around: if the sum of two n-digits numbers has an $n+1$ st carry digit, drop that digit and add 1 to the sum.
c. Let $r>s$ be two n-digit integers. Find s_{9} with a. Now perform carry-around on $\left(r+s_{9}\right)$ with b.
d. What simple arithmetic operation is equivalent to the result of c ?
13. The compass heading CH for going from $P_{1}=\left(l a t_{1}, l o n_{1}\right)$ to $P_{2}=\left(l a t_{2}, l o n_{2}\right)$ (other than the North or South poles) is given by

$$
\mathrm{CH}\left(P_{1}, P_{2}\right)= \begin{cases}L & \cos ^{-1}\left(\operatorname{lon}_{2}-\operatorname{lon}_{1}\right)<0 \\ 2 \pi-L & \text { otherwise }\end{cases}
$$

where $L=\cos ^{-1}\left(\frac{\sin \left(\text { lat }_{2}\right)-\sin \left(\text { lat }_{1}\right) \cos (d)}{\sin (d) \cos \left(\text { lat }_{1}\right)}\right)$ and
$d=\cos ^{-1}\left(\sin \left(\right.\right.$ lat $\left._{1}\right) \sin \left(\right.$ lat $\left._{2}\right)+\cos \left(\right.$ lat $\left._{1}\right) \cos ($ lat 2$) \cos \left(\right.$ lon $_{1}-$ lon $\left.\left._{2}\right)\right)$.

Quick Reference Cards

Quick Reference Card Collection

- Maple 15 (Mac)
- Maple 15 (Win)
- Maplesoft's Online help
- MATLAB
- Scilab
- Octave
- Wikiversity's

Control Structures

- C
- Java
- TI-84 +: Algebra;

Trigonometry

- R
- Python 2.7, Python 3

S I. Special Topics: Computation Cost and Horner's Form

Sections

1. Introduction65
2. Horner's Form 66
Exercises 69

Special Topic: Computation Cost \& Horner's Form

Introduction to Cost

The arithmetic cost of computation is a measure of how much mathematical work a particular expression takes to compute. We will measure an expression in terms of the number of arithmetic operations it requires. For example, we'll measure the cost of computing the expression

$$
\sin \left(2 x^{4}+3 x+1\right)
$$

as

$$
2 \text { additions }+5 \text { multiplications }+1 \text { function call }
$$

for a total of 7 arithmetic operations plus a function call.
At a lower level, the time cost of a CPU instruction is the number of clock cycles taken to execute the instruction. Current CPUs ${ }^{5}$ are measured in FLoating-point OPerations per Second or FLOPS. For example, the eight-core Intel ${ }^{(8)}$ Core" ${ }^{m}$ i9 processor used in an iMac (19/2019) can achieve over 235 gigaFLOPS $=10^{11}$ floating-point operations per second.

[^1]
Horner's Form

Partial Factoring

William Horner studied solving algebraic equations and efficient forms for computation. Horner observed that partial factoring simplified a polynomial calculation. Consider:

$$
\begin{aligned}
\text { Standard Form } & \Leftrightarrow \\
\underbrace{1+2 x}_{1 \text { add }+1 \text { mult }} & =\underbrace{1+2 x}_{1 \text { add }+1 \text { mult }} \\
\underbrace{1+2 x+3 x^{2}}_{2 \text { add }+3 \text { mult }} & =\underbrace{1+x \cdot(2+3 x)}_{2 \text { add }+2 \text { mult }} \\
\underbrace{1+2 x+3 x^{2}+4 x^{3}}_{3 \text { add }+6 \text { mult }} & =\underbrace{1+x \cdot(2+x \cdot[3+4 x])}_{3 \text { add }+3 \text { mult }} \\
\underbrace{1+2 x+3 x^{2}+4 x^{3}+5 x^{4}}_{4 \text { add }+10 \text { mult }} & =\underbrace{1+x \cdot(2+x \cdot[3+x \cdot(4+5 x)])}_{4 \text { add }+4 \text { mult }} \\
\underbrace{1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}}_{5 \text { add }+15 \text { mult }} & =\underbrace{1+x \cdot(2+x \cdot[3+x \cdot(4+x \cdot[5+6 x])])}_{5 \text { add }+5 \text { mult }}
\end{aligned}
$$

What are the patterns?

Patterns

Two Patterns

If $p(x)$ is an n th-degree polynomial, the cost of computation in standard form is $O\left(n^{2}\right)$. Using Horner's form reduces the cost to $O(n)$.

Example: Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}$.
Horner's form: $p(x)=a_{0}+x\left(a_{1}+x\left[a_{2}+x\left(a_{3}+x\left[a_{4}+x\left(a_{5}+a_{6} x\right)\right]\right)\right]\right)$.
This factored form significantly reduces the work needed to evaluate p at a given value of x.

Modified: ? $(x)=a_{1}+x\left[2 a_{2}+x\left(3 a_{3}+x\left[4 a_{4}+x\left(5 a_{5}+6 a_{6} x\right)\right]\right)\right]$.

- What does this modification calculate in terms of p ?
- What is the cost of this modification versus using its standard form?

Further Reductions

Chebyshev's Polynomials

Pafnuty L. Chebyshev worked in number theory, approximation theory, and statistics. The special polynomials named for him are the Chebyshev Polynomials $T_{n}(x)$, which have many interesting properties. For example, T_{n} is even or odd with n, oscillates between -1 and 1 on the interval $[-1,1]$, and also has all its zeros in $[-1,1]$. The Horner form of T_{n} is quite interesting. Let $u=x^{2}$, then:

$$
\begin{aligned}
-3 x+4 x^{3} & \Longleftrightarrow x\left(-3+4 x^{2}\right)=x(-3+4 u) \\
1-8 x^{2}+8 x^{4} & \Longleftrightarrow 1+u(-8+8 u) \\
5 x-20 x^{3}+16 x^{5} & \Longleftrightarrow x(5+u[-20+16 u]) \\
-1+18 x^{2}-48 x^{4}+32 x^{6} & \Longleftrightarrow-1+u(18+u[-48+32 u]) \\
-7 x+56 x^{3}-112 x^{5}+64 x^{7} & \Longleftrightarrow ? ? \\
1-32 x^{2}+160 x^{4}-256 x^{6}+128 x^{8} & \Longleftrightarrow ?
\end{aligned}
$$

Exercises, I

Problems

1. Make a flow chart for evaluating a polynomial using Horner's form.
2. Write Maple or MATLAB code implementing Horner's form.
3. How does synthetic division relate to Horner's form?
4. Write a Maple or MATLAB function that performs synthetic division with a given polynomial at a given value.
5. Calculate the number of additions and multiplications required for evaluating an n th-degree polynomial
a. in standard form.
b. in Horner's form.
c. Look up the sequence $\{0,2,5,9,14,20,27,35,44, \ldots\}$ at The On-Line Encyclopedia of Integer Sequences.
6. Prove that Horner's form reduces cost from $O\left(n^{2}\right)$ to $O(n)$.
7. Analyze the reduction of cost when using Horner's form to evaluate Chebyshev polynomials.

III. Numerical Differentiation

Sections

1. Introduction 71
2. Taylor's Theorem 72
3. Difference Methods 75
i. Forward Differences 75
ii. Backward Differences 76
iii. Centered Differences 77
Appendix I: Taylor's Theorem 80
Appendix II: Centered Difference Coefficients Chart 81
Exercises 82

III. Numerical Differentiation

What is Numerical Differentiation?

Numerical Differentiation is the approximation of the derivative of a function at a point using numerical formulas, not the algebraic rules for differentiation. The basic form uses the slope of a short chord rather than the tangent line.

Since we are subtracting numbers that are close together, loss of computational pre-
 cision can be a serious problem.

Taylor series expansions will be our basic tool for developing formulas and error bounds for numerical derivatives. The errors will have two main components: truncation errors from Taylor polynomials and round-off errors from finite-precision floating-point arithmetic.

Taylor's Theorem

Definition (Taylor Polynomials $\left(1712 / 1715^{6}\right)$)

If f has sufficiently many derivatives at $x=a$, the Taylor polynomial of degree n (or order n) is

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

where $f^{(0)}(a)=f(a)$.

Theorem (Taylor's Theorem)

Suppose f has $n+1$ derivatives on a neighborhood of a. Then $f(x)=p_{n}(x)+R_{n}(x)$ where

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

for some c between x and a.

Proving Taylor's Theorem

Proof. (Taylor's Theorem - Outline).

1. The FToC $\Rightarrow f(x)=f(a)+\int_{0}^{x-a} f^{\prime}(x-t) d t$.
2. Integrate by parts with $u=f^{\prime}(x-t)$ and $d v=d t$:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\int_{0}^{x-a} f^{\prime \prime}(x-t) \cdot t d t
$$

3. Repeat the process: choose $u=f^{(k)}(x-t)$ and $d v=t^{k-1} /(k-1)$! to arrive at

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(a, x)
$$

where

$$
R_{n}(a, x)=\frac{1}{n!} \int_{0}^{x-a} f^{(n+1)}(x-t) \cdot t^{n} d t
$$

Tailored Expressions

Forms of the Remainder

Lagrange (1797): $\quad R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$
Cauchy (1821): $\quad R_{n}(x)=\frac{f^{(n+1)}(c)}{n!}(x-c)^{n}(x-a)$
Integral Form: $\quad R_{n}(x)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t$
Uniform Form: $\quad\left|R_{n}(x)\right| \leq \frac{|x-a|^{n+1}}{(n+1)!} \cdot \max \left|f^{(n+1)}(x)\right|=O\left(|x-a|^{n+1}\right)$

Two Useful Taylor Expansions

Set $x=a+h$ in the Taylor polynomial. Then

$$
\begin{equation*}
f(a+h)=f(a)+f^{\prime}(a) \cdot h+\frac{1}{2!} f^{\prime \prime}(a) \cdot h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a) \cdot h^{3}+\cdots \tag{1}
\end{equation*}
$$

And now set $x=a-h$. Then

$$
\begin{equation*}
f(a-h)=f(a)-f^{\prime}(a) \cdot h+\frac{1}{2!} f^{\prime \prime}(a) \cdot h^{2}-\frac{1}{3!} f^{\prime \prime \prime}(a) \cdot h^{3} \pm \cdots \tag{2}
\end{equation*}
$$

Forward Difference Approximation

Forward Difference

Subtract $f(a)$ from both sides of Eq (1), then divide by h to obtain

$$
\frac{f(a+h)-f(a)}{h}=f^{\prime}(a)+\frac{O\left(h^{2}\right)}{h}
$$

The Forward Difference Formula is

$$
\begin{equation*}
f^{\prime}(a)=\frac{f(a+h)-f(a)}{h}+O(h) . \tag{FD}
\end{equation*}
$$

Examples

1. Suppose $f(x)=1+x e^{\sin (x)}$. For $a=0$ and $h=0.1$, we have

$$
f^{\prime}(x) \approx(1.1105-1.0000) / 0.1=1.1050
$$

2. Suppose $P_{0}=(1.000,3.320)$ and $P_{1}=(1.100,3.682)$. Then

$$
f^{\prime}(x) \approx(3.682-3.320) /(1.100-1.000)=3.620
$$

Backward Difference Approximation

Backward Difference

Subtract $f(a)$ from both sides of Eq (2), then divide by h to obtain

$$
\frac{f(a-h)-f(a)}{h}=-f^{\prime}(a)+\frac{O\left(h^{2}\right)}{h}
$$

The Backward Difference Formula is

$$
\begin{equation*}
f^{\prime}(a)=\frac{f(a)-f(a-h)}{h}+O(h) . \tag{BD}
\end{equation*}
$$

Examples

1. Again, suppose $f(x)=1+x e^{\sin (x)}$. For $a=0$ and $h=0.1$, we have $f^{\prime}(x) \approx(1.0000-0.910) / 0.1=0.900$.
2. Suppose $P_{0}=(1.000,3.320)$ and $P_{1}=(0.900,2.970)$. Then

$$
f^{\prime}(x) \approx(3.320-2.970) /(1.000-0.900)=3.500
$$

Centered Difference Approximation

Centered Difference

Subtract $O\left(h^{3}\right)$ versions of Eqs (1) and (2).

$$
\begin{aligned}
f(a+h) & =f(a)+f^{\prime}(a) \cdot h+\frac{1}{2!} f^{\prime \prime}(a) \cdot h^{2}+O\left(h^{3}\right) \\
f(a-h) & =f(a)-f^{\prime}(a) \cdot h+\frac{1}{2!} f^{\prime \prime}(a) \cdot h^{2}+O\left(h^{3}\right) \\
\hline f(a+h)-f(a-h) & =2 f^{\prime}(a) \cdot h+O\left(h^{3}\right)
\end{aligned}
$$

Solve for $f^{\prime}(a)$ to obtain:
The Centered Difference Formula

$$
\begin{equation*}
f^{\prime}(a)=\frac{f(a+h)-f(a-h)}{2 h}+O\left(h^{2}\right) \tag{CD}
\end{equation*}
$$

Example

1. Once more, suppose $f(x)=1+x e^{\sin (x)}$. For $a=0$ and $h=0.1$, we have

$$
f^{\prime}(x) \approx(1.110-0.910) / 0.2=1.000
$$

The Chart

A Table of Differences from a Function

Let $f(x)=1+x e^{\sin (x)}$ and $a=1.0$. Then

$$
f^{\prime}(1)=e^{\sin (1)}(1+\cos (1)) \approx 3.573157593
$$

h	$\mathrm{FD}(h)$	error	$\mathrm{BD}(h)$	error	$\mathrm{CD}(h)$	error
$1 / 2^{1}$	3.494890	0.078268	3.024408	0.548750	3.259649	0.313509
$1 / 2^{2}$	3.636316	0.063158	3.347764	0.225394	3.492040	0.081118
$1 / 2^{3}$	3.628464	0.055306	3.476944	0.096214	3.552704	0.020454
$1 / 2^{4}$	3.606368	0.033210	3.529696	0.043462	3.568032	0.005126
$1 / 2^{5}$	3.591104	0.017946	3.552640	0.020518	3.571872	0.001286
$1 / 2^{6}$	3.582464	0.009306	3.563200	0.009958	3.572832	0.000326
$1 / 2^{7}$	3.577600	0.004442	3.568256	0.004902	3.572928	0.000230
$1 / 2^{8}$	3.575296	0.002138	3.570688	0.002470	3.572992	0.000166

Another Chart

A Table of Differences from Data

Estimate the derivatives of a function given the data below $(h=0.4)$.

x_{i}	-2.00	-1.60	-1.20	-0.80	-0.40	0.00	0.40	0.80	1.20	1.60

Forward Differences

x_{i}	-2.00	-1.60	-1.20	-0.80	-0.40	0.00	0.40	0.80	1.20	1.60
2.00										
y_{i}	4.16	2.12	0.625	-0.375	-0.90	-0.90	-0.375	0.625	2.12	4.16
\bowtie										

Backward Differences

x_{i}	-2.00	-1.60	-1.20	-0.80	-0.40	0.00	0.40	0.80	1.20	1.60
y_{i}	\bowtie	4.16	2.12	0.625	-0.375	-0.90	-0.90	-0.375	0.625	2.12

Centered Differences

x_{i}	-2.00	-1.60	-1.20	-0.80	-0.40	0.00	0.40	0.80	1.20	1.60
y_{i}	\bowtie	3.138	1.374	0.125	-0.637	-0.90	-0.6375	0.125	1.374	3.138
\bowtie										

Actual Derivatives (from the function's formula - a cubic polynomial)

x_{i}	-2.00	-1.60	-1.20	-0.80	-0.40	0.00	0.40	0.80	1.20	1.60
y_{i}	5.325	3.057	1.293	0.033	-0.723	-0.975	-0.723	0.033	1.293	3.057

Appendix I: Taylor's Theorem

Methodus Incrementorum Directa et Inversa (1715) ${ }^{1}$

In 1712, Taylor wrote a letter containing his theorem without proof to Machin. The theorem appears with proof in Methodus Incrementorum as Corollary II to Proposition VII. The proposition is a restatement of "Newton's [interpolation] Formula." Maclaurin introduced the method (undet coeffs; order of contact) we use now to present Taylor's theorem in elementary calculus classes in A Treatise of Fluxions (1742) §751.

Corollary (Maclaurin's Corollary II (pg 23))

If for the evanescent increments, the fluxions that are proportional to them are written, the quantities ${ }^{\prime} v,{ }^{\prime} v, v, v,{ }_{n}, \& c$. being now made all equal to the time z uniformly flows to become $z+v$, then x will become

$$
x+\dot{x} \frac{v}{1 \dot{z}}+\ddot{x} \frac{v^{2}}{1.2 \dot{z}^{2}}+\dot{\bar{x}} \frac{v^{3}}{1 \cdot 2 \cdot 3 \dot{z}^{3}}+\& c .
$$

- Investigate the connection between synthetic division and Taylor expansions.

Appendix II: Centered Difference Coefficients Chart

 Centered Finite Difference Formula Coefficients ${ }^{1}$| Derivative | $O\left(h^{a}\right)$ | $x-4 h$ | $x-3 h$ | $x-2 h$ | $x-h$ | x | $x+h$ | $x+2 h$ | $x+3 h$ | $x+4 h$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | | | | -1/2 | 0 | 1/2 | | | |
| | 4 | | | 1/12 | -2/3 | 0 | 2/3 | -1/12 | | |
| | 6 | | -1/60 | 3/20 | -3/4 | 0 | 3/4 | -3/20 | 1/60 | |
| | 8 | 1/280 | -4/105 | 1/5 | -4/5 | 0 | 4/5 | $-1 / 5$ | 4/105 | $-1 / 280$ |
| 2 | 2 | | | | 1 | -2 | 1 | | | |
| | 4 | | | -1/12 | 4/3 | -5/2 | 4/3 | -1/12 | | |
| | 6 | | 1/90 | -3/20 | 3/2 | -49/18 | 3/2 | -3/20 | 1/90 | |
| | 8 | -1/560 | 8/315 | -1/5 | 8/5 | -205/72 | 8/5 | $-1 / 5$ | 8/315 | $-1 / 560$ |
| 3 | 2 | | | -1/2 | 1 | 0 | -1 | 1/2 | | |
| | 4 | | 1/8 | -1 | 13/8 | 0 | -13/8 | 1 | $-1 / 8$ | |
| | 6 | -7/240 | 3/10 | $-169 / 120$ | 61/30 | 0 | -61/30 | 169/120 | $-3 / 10$ | 7/240 |
| 4 | 2 | | | 1 | -4 | 6 | -4 | 1 | | |
| | 4 | | $-1 / 6$ | 2 | -13/2 | 28/3 | -13/2 | 2 | $-1 / 6$ | |
| | 6 | 7/240 | -2/5 | 169/60 | $-122 / 15$ | 91/8 | $-122 / 15$ | 169/60 | -2/5 | 7/240 |

E.g., the third derivative's centered difference approximation with second-order accuracy is

$$
f^{(3)}\left(x_{0}\right) \approx \frac{-\frac{1}{2} f\left(x_{0}-2 h\right)+1 f\left(x_{0}-h\right)+0 f\left(x_{0}\right)-1 f\left(x_{0}+h\right)+\frac{1}{2} f\left(x_{0}+2 h\right)}{h^{3}}+O\left(h^{2}\right) .
$$

[^2]
Exercises, I

Problems

1. Show that the centered difference formula is the average of the forward and backward difference formulas.
2. Explain why the centered difference formula is $O\left(h^{2}\right)$ rather than $O(h)$.
3. Add $O\left(h^{4}\right)$ versions of Eqs (1) and (2) to find a centered difference approximation of $f^{\prime \prime}(a)$.
4. Investigate the ratio of error in the function's difference chart as h is successively divided by 2 for
a. forward differences
b. backward differences
c. centered differences
5. Examine the ratios of error to h in the data difference chart for
a. forward differences
b. backward differences
c. centered differences

Exercises, II

Problems

6. Derive the 5-point difference formula for $f^{\prime}(a)$ by combining Taylor expansions to $O\left(h^{5}\right)$ for $f(a \pm h)$ and $f(a \pm 2 h)$.
7. Write a Maple or MATLAB function that uses the backward difference formula (BD) in Euler's method of solving differential equations.
8. Collect the temperatures (with a CBL) in a classroom from 8:00 am to $6: 00 \mathrm{pm}$.
a. Estimate the rate of change of temperatures during the day.
b. Compare plots of the rates given by forward, backward, and centered differences.
9. a. Find Taylor expansions for \sin and \cos to $O\left(x^{6}\right)$. Estimate $\cos (1.0)$.
b. Since $\frac{d}{d x} \sin (x)=\cos (x)$, we can estimate cos with the derivative of \sin. Use your expansion of \sin and $h=0.05$ to approximate $\cos (1.0)$ with
i. forward differences
ii. backward differences
iii. centered
differences

Discuss the errors.

IV. Root-Finding Algorithms

Sections

1. The Bisection Method 85
2. Newton-Raphson Method 89
3. Secant Method 93
4. Regula Falsi 97
5. Halley's Method 101
Appendix III: Rate of Convergence 108
Exercises 109
Links and Others 112

IV. Root Finding Algorithms: The Bisection Method

The Bisection Method

If a continuous function f has a root r in an interval, then r is in either the interval's left half or right half. Suppose r is in the right half interval. Then r must be in either this smaller interval's left half or right half. Find which half and continue the procedure.

This process depends on the Intermediate Value Theorem

Theorem (Bolzano's Intermediate Value Theorem (1817))

Let f be continuous on $[a, b]$. Suppose that y^{*} is between $f(a)$ and $f(b)$. Then there is a point $c \in(a, b)$ such that $f(c)=y^{*}$.
In particular, if $f(a) \cdot f(b)<0$, then f has a root r with $a<r<b$.

The Bisection Error

Theorem (Bisection Algorithm)

Let $[a, b]$ be an interval on which f changes sign. Define

$$
x_{n}=c_{n}=\frac{1}{2}\left(a_{n-1}+b_{n-1}\right)
$$

with $\left[a_{n}, b_{n}\right]$ chosen by the algorithm. Then f has a root $\alpha \in[a, b]$, and

$$
\left|\alpha-x_{n}\right| \leq(b-a) \cdot\left(\frac{1}{2}\right)^{n}
$$

For an error tolerance $\varepsilon>0$, set

$$
n=\left\lceil\frac{\log (b-a)-\log (\varepsilon)}{\log (2)}\right\rceil
$$

to obtain $\left|\alpha-x_{n}\right| \leq \varepsilon$.
(This is called linear convergence.)

Theorem (Cauchy's Bound for Real Roots ${ }^{1}$ (1829))

Suppose that r is a root of $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$. Let $M=\max _{k=0 . n-1}\left|a_{k}\right|$. Then $|r| \leq M+1$.

The Bisection Method Algorithm

Algorithm (Bisection Method (Basic Outline))

Given f and $[a, b]$.

1. Set $k=0$ and $\left[a_{0}, b_{0}\right]=[a, b]$.
2. Calculate $c=\frac{1}{2}\left(a_{k}+b_{k}\right)$
3. if $f(c) \approx 0$, then c is a root; quit
4. if $f(c) \cdot f\left(a_{k}\right)<0$, then set $\left[a_{k+1}, b_{k+1}\right]=\left[a_{k}, c\right]$
5. else if $f(c) \cdot f\left(b_{k}\right)<0$, then set $\left[a_{k+1}, b_{k+1}\right]=\left[c, b_{k}\right]$
6. Set $k=k+1$ and (if k isn't too big) go to 2 .

The Bisection Method Pseudocode

```
input : \(a, b\), eps
extern: \(f(x)\)
\(\mathrm{fa} \leftarrow \mathrm{f}(\mathrm{a})\);
\(\mathrm{fb} \leftarrow \mathrm{f}(\mathrm{b})\);
if \(f a \cdot f b>0\) then
    stop ; \(/ *\) Better: \(\operatorname{sign}(f a) \neq \operatorname{sign}(f b) * /\)
\(\mathrm{n} \leftarrow \operatorname{ceiling}((\log (b-a)-\log (e p s)) / \log (2))\);
for \(i \leftarrow 1\) to \(n\) do
        \(c \leftarrow a+0.5 \cdot(b-a) ;\)
        \(\mathrm{fc} \leftarrow \mathrm{f}(\mathrm{c})\);
        if abs (fc)<eps then
            L return: c
        if \(f a \cdot f c<0\) then
            \(\mathrm{b} \leftarrow \mathrm{c}\);
            \(\mathrm{fb} \leftarrow \mathrm{fc} ;\)
        else
            if \(f a \cdot f c>0\) then
                        \(a \leftarrow c\);
                            \(\mathrm{fa} \leftarrow \mathrm{fc}\);
            else
            return: c
return: c
```


Newton-Raphson Method

Newton-Raphson Method ${ }^{2}$

If a function f is "nice," use the tangent line to approximate f. The root of the tangent line - easy to find - approximates the root of f.

1. $f(x)=f(a)+f^{\prime}(a)(x-a)$

2. Set $f(x)=0$; solve for x :

$$
x=a-\frac{f(a)}{f^{\prime}(a)}
$$

3. Set $N(x)=x-\frac{f(x)}{f^{\prime}(x)}$. Then

$$
x_{n+1}=N\left(x_{n}\right)
$$

${ }^{2}$ The general method we use was actually developed by Simpson; Newton worked with polynomials; Raphson iterated the formula to improve the estimate of the root.

Newton's Method Error

Theorem

Let $f \in \mathscr{C}^{2}(I)$ on some interval $I \subset \mathbb{R}$. Suppose $\alpha \in I$ is a root of f. Choose $x_{0} \in I$ and define

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Then

$$
\left|\alpha-x_{n+1}\right| \leq M \cdot\left|\alpha-x_{n}\right|^{2}
$$

or, with $\varepsilon_{n}=\left|\alpha-x_{n}\right|$,

$$
\varepsilon_{n+1} \leq M \cdot \varepsilon_{n}^{2}
$$

where M is an upper bound for $\frac{1}{2}\left|f^{\prime \prime}(x) / f^{\prime}(x)\right|$ on I.

This is called quadratic or "order 2" convergence.

Newton's Method Algorithm

Algorithm (Newton's Method (Basic Outline))

Given f and x_{0}.

1. Set $k=1$ and $N(x)=x-\frac{f(x)}{f^{\prime}(x)}$.
2. Compute $x_{k}=N\left(x_{k-1}\right)$.
3. If $f\left(x_{k}\right) \approx 0$, then x_{k} is a root; quit
4. else if $\left|f\left(x_{k}\right)\right|$ or $\left|x_{k}-x_{k-1}\right|$ is very small, then $x_{k} \approx$ a root; quit
5. Set $k=k+1$ and (if k isn't too big) go to 2 .

Newton's Method Pseudocode

```
input : x0, eps, n
extern: f(x),df(x)=\mp@subsup{f}{}{\prime}(x)
fx0 \leftarrowf(x0);
dfx0}\leftarrow\textrm{df}(\textrm{xO})
    for }i\leftarrow1\mathrm{ to }n\mathrm{ do
        x1 \leftarrow x0 - fx0/dfx0;
        fx1 \leftarrowf(x1);
        if}|fx1|+|x1-x0|<eps the
                return: x1
        x0 \leftarrow x1;
        fx0 \leftarrow fx1;
        dfx0}\leftarrow\textrm{df}(\textrm{xO})
return: x1
```


Secant Method

Secant Method

Newton's method requires evaluating the derivative - this can be from difficult to impossible in practice. Approximate the derivative in Newton's method with a secant line ${ }^{3}$:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}} \\
& =x_{n}-f\left(x_{n}\right) \cdot \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
\end{aligned}
$$

${ }^{3}$ Historically, the methods developed the opposite way: Viète used discrete steps of 10^{-k} (1600); Newton used secants (1669), then truncated power series (1687); Simpson used fluxions/derivatives (1740) with general functions.

Secant Method Error

Theorem

Let $f \in \mathscr{C}^{2}(I)$ for some interval $I \subset \mathbb{R}$. Suppose $\alpha \in I$ is a root of f. Choose x_{0} and $x_{1} \in I$, and define

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \cdot \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

Then

$$
\left|\alpha-x_{n+1}\right| \leq M \cdot\left|\alpha-x_{n}\right| \cdot\left|\alpha-x_{n-1}\right|
$$

or, with $\varepsilon_{n}=\left|\alpha-x_{n}\right|$,

$$
\varepsilon_{n+1} \leq M \cdot \varepsilon_{n} \cdot \varepsilon_{n-1}
$$

where M is an upper bound for $\frac{1}{2}\left|f^{\prime \prime}(x) / f^{\prime}(x)\right|$ on I.

This is superlinear convergence of "order 1.6." (Actually, it's order $\frac{1+\sqrt{5}}{2}$.)

Secant Method Algorithm

Algorithm (Secant Method (Basic Outline))

Given f, x_{0}, and x_{1} :

1. Set $k=2$ and $S\left(x_{0}, x_{1}\right)=x_{1}-f\left(x_{1}\right) \cdot \frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)}$.
2. Compute $x_{k}=S\left(x_{k-1}, x_{k-2}\right)$.
3. If $f\left(x_{k}\right) \approx 0$, then x_{k} is a root; then quit
4. else if $\left|x_{k}-x_{k-1}\right|$ is very small, then $x_{k} \approx$ a root; quit
5. Set $k=k+1$ and (if k isn't too big) go to 2 .

Secant Method Pseudocode

```
input : \(x 0, x 1\), eps, \(n\)
extern: \(f(x)\)
\(\mathrm{f0} \leftarrow \mathrm{f}(\mathrm{x} 0)\);
\(\mathrm{f} 1 \leftarrow \mathrm{f}(\mathrm{x} 1)\);
for \(i \leftarrow 1\) to \(n\) do
    \(c \leftarrow \mathrm{x} 1-\mathrm{f} 1 \cdot(\mathrm{x} 1-\mathrm{x} 0) /(\mathrm{f} 1-\mathrm{f} 0)\);
    \(\mathrm{fc} \leftarrow \mathrm{f}(\mathrm{c})\);
    \(x 0 \leftarrow \mathrm{x} 1\); /* update parameters */
    \(\mathrm{x} 1 \leftarrow \mathrm{c}\);
    \(\mathrm{f0} \leftarrow \mathrm{f} 1\);
    \(\mathrm{f} 1 \leftarrow \mathrm{fc}\);
    if \(|x 1-x 0|<e p s\) then
        return: x1; /* Or: \(|f c|<e p s ~ * /\)
return: x1
```


Regula Falsi

Regula Falsi

The regula falsi, or "false position," method ${ }^{4}$ is very old; the Egyptians used the concept. The method appears in the Vaishali Ganit (India, 3rd century BC), Book on Numbers and Computation \& Nine Chapters on the Mathematical Art (China, 2nd century BC), Book of the Two Errors (Persia, c. 900), and came to the west in Fibonacci's Liber Abaci (1202).
Regula falsi combines the secant and bisection techniques: Use the secant to find a "middle point," then keep the interval with a sign change, i.e., that brackets the root.

[^3]
Regula Falsi Method Error

Theorem

Let $f \in \mathscr{C}^{2}(I)$ for some interval $I \subset \mathbb{R}$. Suppose $\alpha \in I$ is a root of f. Choose a and $b \in I$ such that $\operatorname{sign}(f(a)) \neq \operatorname{sign}(f(b))$, and define

$$
c=b-f(b) \cdot \frac{b-a}{f(b)-f(a)} .
$$

Then

$$
|\alpha-c| \leq M \cdot|\alpha-a|
$$

or, with $\varepsilon_{n}=\left|\alpha-x_{n}\right|$,

$$
\varepsilon_{n+1} \leq M \cdot \varepsilon_{n}
$$

where $0<M<1$ is a constant depending on $\left|f^{\prime \prime}(x)\right|$ and $\left|f^{\prime}(x)\right|$ on I.

This is linear or "order 1" convergence. (The same as the bisection method.)

Regula Falsi Algorithm

Algorithm (Regula Falsi (Basic Method))

Given f, a, and b :

1. Set $k=1$ and $S(a, b)=b-f(b) \cdot \frac{b-a}{f(b)-f(a)} \quad=\frac{a \cdot f(b)-b \cdot f(a)}{f(b)-f(a)}$
2. Compute $c=S(a, b)$.
3. If $f(c) \approx 0$, then c is a root; quit
4. If $f(c) \cdot f(a)<0$, then $b \leftarrow c$
5. else $a \leftarrow c$
6. If $|b-a|$ is very small compared to $|a|$, then a is a root; quit
7. Set $k=k+1$, and (if k isn't too big) go to 2 .

Regula Falsi Pseudocode

```
input : \(a, b\), eps, \(n\)
extern: \(f(x)\)
\(\mathrm{fa} \leftarrow \mathrm{f}(\mathrm{a})\);
\(\mathrm{fb} \leftarrow \mathrm{f}(\mathrm{b})\);
if \(f a \cdot f b>0\) then
    stop ;
for \(i \leftarrow 1\) to \(n\) do
        \(c \leftarrow(\mathrm{a} \cdot \mathrm{fb}-\mathrm{b} \cdot \mathrm{fa}) /(\mathrm{fb}-\mathrm{fa}) ;\)
        \(\mathrm{fc} \leftarrow \mathrm{f}(\mathrm{c})\);
        if \(|f c|<e p s\) then
            L return: c
        if \(f a \cdot f c<0\) then
            \(\mathrm{b} \leftarrow \mathrm{c}\);
            \(\mathrm{fb} \leftarrow \mathrm{fc}\);
        else
            if \(f b \cdot f c<0\) then
                    \(a \leftarrow c\);
                    fa \(\leftarrow \mathrm{fc}\);
            else
                    return: c
return: c
```


Halley's Method

Halley's Method

Halley's method ${ }^{5}$ of 1694 extends Newton's method to obtain cubic convergence. Halley was motivated by de Lagny's 1692 work showing algebraic formulas for extracting roots. Using the quadratic term in Taylor's formula obtains the extra degree of convergence. Just as Newton did not recognize the derivative appearing in his iterative method, Halley also missed the connection to calculus - it was first seen by Taylor in 1712. The version of Halley's method we use comes from applying Newton's method to the auxiliary function

$$
g(x)=\frac{f(x)}{\sqrt{\left|f^{\prime}(x)\right|}}
$$

Then the iterating function for Halley's method is

$$
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)} .
$$

[^4]
Halley's Method Error

Theorem

Let $f \in \mathscr{C}^{3}(I)$ on some interval $I \subset \mathbb{R}$. Suppose $\alpha \in I$ is a root of f. Choose $x_{0} \in I$ and define

$$
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)} .
$$

Then

$$
\left|\alpha-x_{n+1}\right| \leq M \cdot\left|\alpha-x_{n}\right|^{3}
$$

or, with $\varepsilon_{n}=\left|\alpha-x_{n}\right|$,

$$
\varepsilon_{n+1} \leq M \cdot \varepsilon_{n}^{3}
$$

where M is an upper bound for $\left|\frac{3 f^{\prime \prime}(x)^{2}-2 f^{\prime}(x) f^{\prime \prime \prime}(x)}{12 f^{\prime}(x)^{2}}\right|$ on I.

This is called cubic or "order 3" convergence.

Halley's Method Algorithm

Algorithm (Halley's Method (Basic Outline))

Given f and x_{0}.
0 . Compute f^{\prime} and $f^{\prime \prime}$.

1. Set $k=1$ and $H(x)=x-\frac{2 f(x) f^{\prime}(x)}{2 f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)}$.
2. Compute $x_{k}=H\left(x_{k-1}\right)$.
3. If $f\left(x_{k}\right) \approx 0$, then x_{k} is a root; quit
4. else if $\left|f\left(x_{k}\right)\right|$ or $\left|x_{k}-x_{k-1}\right|$ is very small, then $x_{k} \approx$ a root; quit
5. Set $k=k+1$ and (if k isn't too big) go to 2 .

Halley's Method Pseudocode

```
input : \(x 0\), eps, \(n\)
extern: \(f(x), \operatorname{df}(x)=f^{\prime}(x), \operatorname{ddf}(x)=f^{\prime \prime}(x)\)
\(\mathrm{fx} 0 \leftarrow \mathrm{f}(\mathrm{x} 0) ;\)
\(\mathrm{dfx} 0 \leftarrow \mathrm{df}(\mathrm{x} 0) ;\)
\(\operatorname{ddfx} 0 \leftarrow \operatorname{ddf}(\times 0)\);
    for \(i \leftarrow 1\) to \(n\) do
        \(\mathrm{x} 1 \leftarrow \mathrm{x} 0-2 \cdot \mathrm{fx} 0 \cdot \mathrm{df} \times 0 /\left(2 \cdot \mathrm{df} \times 0^{\wedge} 2-\mathrm{fx} 0 \cdot \mathrm{ddfxo}\right) ;\)
        \(\mathrm{f} \times 1 \leftarrow \mathrm{f}(\mathrm{x} 1)\);
        if \(|f x 1|+|x 1-x 0|<e p s\) then
            return: \(\times 1\)
        \(x 0 \leftarrow x 1\);
        \(\mathrm{f} \times 0 \leftarrow \mathrm{f}(\mathrm{x} 1)\);
        \(\mathrm{df} \times 0 \leftarrow \mathrm{df}(\mathrm{x} 1)\);
        \(\operatorname{ddfx} 0 \leftarrow \operatorname{ddf}(\times 1) ;\)
return: \(\times 1\)
```


A Sample Problem

Polynomial Root

Find the real root of $f(x)=-x^{11}+x^{2}+x+0.5$ in $\left[\frac{1}{2}, \frac{3}{2}\right] . \quad(r \doteq 1.098282972)$ (This is f 's only real root.)

Bisection	Newton		Secant	Regula Falsi	Halley	
[0.5000, 1.5000]	0.5000	[1.500]	[+0.500, +1.500]	[0.500, 1.5]	0.5000	$1.500]$
[1.0000, 1.5000]	-0.1280	1.370	$[+0.515,+0.500]$	[0.515, 1.5]	-0.3752	1.268
[1.0000, 1.2500]	-0.6500	1.258	$[-0.124,+0.515]$	[0.530, 1.5]	-0.0538	1.128
[1.0000, 1.1250]	-0.0236	1.171	[-0.406, -0.124]	[0.545, 1.5]	-1.2080	1.099
[1.0625, 1.1250]	-0.5241	1.119	[-0.956, -0.406]	[0.561, 1.5]	-0.9812	1.098
[1.0938, 1.1250]	3.315	1.100	[-0.230, -0.956]	[0.576, 1.5]	-0.6556	1.098
[1.0938, 1.1094]	3.014	1.098	[+0.085, -0.230]	[0.592, 1.5]	-0.9822	
[1.0938, 1.1016]	2.740	1.098	$[-0.607,+0.085]$	[0.607, 1.5]	-0.6588	
[1.0977, 1.1016]	2.491		$[-1.171,-0.607]$	[0.623, 1.5]	-0.9934	
[1.0977, 1.0996]	2.264		[-0.583, -1.170]	[0.639, 1.5]	-0.6846	
[1.0977, 1.0986]	2.059		$[-0.558,-0.583]$	[0.654, 1.5]	-1.085	

The Sample Problem's Graph

A plot of $f(x)=-x^{11}+x^{2}+x+0.5$

Method	Type	Update Function
Bisection	Bracketing (2 pts)	$B(a, b)=\frac{1}{2}(a+b)$
Regula Falsi	Bracketing (2 pts)	$R(a, b)=\frac{a f(b)-b f(a)}{f(b)-f(a)}$
Secant method	Approximating (1 pt)	$S\left(x_{n}, x_{n-1}\right)=\frac{x_{n-1} f\left(x_{n}\right)-x_{n} f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$
Newton's method	Approximating (1 pt)	$N\left(x_{n}\right)=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
Halley's method	Approximating (1 pt)	$H\left(x_{n}\right)=x_{n}-\frac{2 f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}$

Method	Error	Convergence Speed	
Computation			
Bisection	$\varepsilon_{n+1} \leq \frac{1}{2} \varepsilon_{n}$	Linear (order 1)	Low
Regula Falsi	$\varepsilon_{n+1} \leq C \varepsilon_{n}$	Linear (order 1)	Medium
Secant method	$\varepsilon_{n+1} \leq C \varepsilon_{n} \varepsilon_{n-1}$	Superlinear (order 1.6)	Medium
Newton's method	$\varepsilon_{n+1} \leq C \varepsilon_{n}^{2}$	Quadratic (order 2)	High
Halley's method	$\varepsilon_{n+1} \leq C \varepsilon_{n}^{3}$	Cubic (order 3)	Very High

Appendix III: Rate of Convergence

Definition (Rate of Convergence)

Let $x_{n} \rightarrow x^{*}$ and set $\varepsilon_{n}=\left|x^{*}-x_{n}\right|$. Then x_{n} converges to x^{*} with rate r iff there is a positive constant C (the asymptotic error constant) such that

$$
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n}^{r}}=C
$$

Terminology

Rate	Parameters
Sublinear	$r=1$ and $C=1$
Linear	$r=1$ and $0<C<1$
Superlinear	$r>1$
Quadratic	$r=2$
Cubic	$r=3$

NB: Quadratic and cubic are special cases of superlinear convergence.

Exercises, I

Exercises

For each of the functions given in 1. to 7. below:
a. Graph f in a relevant window.
b. Use Maple's fsolve to find f 's root to 10 digits.
c. Use each of the five methods with a maximum of 15 steps and fill the table:

Method	Approx Root	Relative Error	No. of Steps

1. The "Newton-era" test function $T(x)=x^{3}-2 x-5$.
2. $f(x)=\frac{1}{13}-\frac{1}{7} x-x^{11}$
3. $R(x)=\frac{30 x-31}{29(x-1)}$
4. $g(x)=\int_{0}^{x} \sin \left(t^{2} / 2\right) d t-1$
5. The intransigent function $\psi(x)=10 \cdot e^{-x} \cdot\left(1+\frac{\ln \left(x^{2}\right)}{x}\right)$.
6. Explain why the bisection method has difficulties with two roots in an interval.

Exercises, II

Exercises

For Exercises 9. to 15., generate your personal polynomial $p(x)$ in Maple by entering:
> randomize(your phone number, no dashes or spaces):

```
deg:= 1+2*rand(4..9)():
p:=randpoly(x, degree=deg, coeffs=rand(-2..2)):
p:=unapply(sort (p),x);
```

9. Use fsolve to find the roots of your polynomial $p(x)$.
10. Compare the results of the four root-finding methods applied to $p(x)$.
11. Report on stopping conditions: function value, step/interval size, maximum number of iterations.
12. Find any bad initial points for Newton's method for $p(x)$.
13. Verify Fibonacci's root ${ }^{6} x=1.368808107$ of the equation $x^{3}+2 x^{2}+10 x=20$.
14. Determine the convergence rates of the following sequences.
a. 2^{-n}
b. $1+2^{(1-2 n)}$
c. $(n+1) / n$
d. $\sin (k) / k$
15. Solve this problem from The Nine Chapters on the Mathematical Art (c. 200 BCE): "Now an item is purchased jointly; everyone contributes 8 coins, the excess is 3 ; everyone contributes 7 , the deficit is 4 . Tell: The number of people, the item price, what is each?"
${ }^{6}$ Fibonacci found this root in 1225 - no one knows how he did it!

Exercises, III

Exercises

16. Set $f(x)=x^{3} \cdot e^{x}-\sqrt{2}$ and $x_{0}=1.0$.
a. Plot f over $0 \leq x \leq 1$ to see the root.
b. Use Newton's method to find the root; print x_{n} for each iteration.
c. Alter Newton's method:
i. Replace $f^{\prime}(x)$ in Newton's method with a centered difference formula approximation Eq (CD).
ii. Execute the altered Newton's method beginning with $h=1.0$.
iii. Decrease h by 0.1 and rerun the altered Newton's method.
iv. Keep decreasing h until the results are very close to Newton's method.
v. Determine practical reasons for using this modification rather than the original method.
17. [Group Exercise] Redo the previous problem finding all roots in $[-1,1]$ of the 8 th Chebyshev polynomial

$$
T_{8}(x)=128 x^{8}-256 x^{6}+160 x^{4}-32 x^{2}+1 .
$$

Links and Others

Wikipedia entries:

- Bisection Method
- Newton's Method
- Secant Method
- Regula Falsi Method

More information:

- Massoud Malek's Root-Finding Methods
- Chad Higdon-Topaz's Iterative methods for root finding (video)

See also: Interactive Educational Modules in Scientific Computing (U of I) and MathWorld (Wolfram Research)

Investigate:

- Müller's method
- Brent's method
- Bernoulli's method
- Jenkins-Traub method
- Laguerre's method
- Durand-Kerner method
- Fibonacci Search method
- Ridder's method
- Splitting Circle method
- Maple's fsolve
- MATLAB's fzero
- Wilkinson's Perfidious Polynomial:

$$
w(x):=\prod_{k=1}^{20}(x-k)
$$

S II. Special Topics: Modified Newton's Method

Sections

1. Introduction .. 114
2. Modified Newton's Method ... 115

Exercises ... 116

II. Special Topic: Modified Newton's Method

Newton's Method Revisited

Newton's method uses the iteration function

$$
N(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

A fixed point of N, which is a value x^{*} where $N\left(x^{*}\right)=x^{*}$, is a zero of $f(x)$. It was really Simpson who realized the connection of Newton's method with calculus; Newton had developed an algebraic method in 1669 (not publishing it until 1711); Simpson's generalized version appeared in 1740 in his text A New Treatise of Fluxions. In 1690, midway between Newton and Simpson, Raphson published a simplified version of Newton's method that was based on iterations, much like ours today.

Modified Newton's Method

Modified Newton's Method

To modify Newton's method, replace the "correcting factor" quotient f / f^{\prime} with $f^{\prime} / f^{\prime \prime}$. Our new iterator is

$$
M(x)=x-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
$$

Choose an initial value x_{0}. Then calculate the values $x_{n+1}=M\left(x_{n}\right)$ for $n=1,2, \ldots$. The question is: Does x_{n} have a limit?

Convergence?

Use Newton's example function: $y=x^{3}-2 x-5$. Then

$$
M(x)=x-\frac{3 x^{2}-2}{6 x}
$$

Starting with $x_{0}=1$ gives the sequence $x_{1}=0.8 \overline{3}, x_{2}=0.81 \overline{6}$, $x_{3}=0.81649659, x_{4}=0.81649658$. Where are these points going?

Exercises

Problems

1. Use Maple to generate a personalized random polynomial with:
> randomize(your phone number, no dashes or spaces): deg $:=1+2 *$ rand (4..9) () :
$\mathrm{p}:=$ randpoly (x , degree=deg, coeffs=rand (-2. .2)) :
$\mathrm{p}:=$ unapply (sort (p), x) ;
2. Apply the Modified Newton's Method to your polynomial with a selection of starting points.
3. Produce a chart of your intermediate results.
4. Graph your polynomial and the trajectories using your data chart.
5. Can you determine a specific value where the trajectories change from one to another target point?
6. Investigate the Modified Newton's Method's rate of convergence.

V. Numerical Integration

Sections

1. Numerical Integration 118
2. Left Endpoint, Right Endpoint, and Midpoint Sums 119
3. Trapezoid Sums 120
4. Simpson's Rule 122
5. Gaussian Quadrature 126
6. Gauss-Kronrod Quadrature 131
7. A Menagerie of Test Integrals 135
Appendix IV: Legendre \& Stieltjes Polynomials for $\mathrm{GK}_{7,15}$ 137
Exercises 138
Links and Others 139

V. Numerical Integration

What Is Numerical Integration?

Numerical integration or (numerical) quadrature is the calculation of a definite integral using numerical formulas, not the fundamental theorem. The Greeks studied quadrature: given a figure, construct a square that has the same area. The two most famous are Hippocrates of Chios' Quadrature of the Lune (c. 450 BC) and Archimedes' Quadrature of the Parabola (c. 250 BC). Archimedes used the method of exhaustion - a precursor to calculus - invented
 by Eudoxus.

Squaring the circle is one of the classical problems of constructing a square with the area of a given circle - it was shown to be impossible by Lindemann's theorem (1882). ${ }^{1}$

[^5]
Methods of Elementary Calculus

Rectangle Methods

Left endpoint sum

$$
A_{n} \approx \sum_{k=1}^{n} f\left(x_{k-1}\right) \Delta x_{k}
$$

$$
\varepsilon_{n} \leq \frac{(b-a)^{2}}{2} \cdot M_{1} \cdot \frac{1}{n}
$$

where $M_{i}=\max \left|f^{(i)}(x)\right|$

Midpoint sum

$$
A_{n} \approx \sum_{k=1}^{n} f\left(m_{k}\right) \Delta x_{k}
$$

$$
m_{k}=\frac{1}{2}\left(x_{k-1}+x_{k}\right)
$$

$$
\varepsilon_{n} \leq \frac{(b-a)^{3}}{24} \cdot M_{2} \cdot \frac{1}{n^{2}}
$$

Right endpoint sum

$A_{n} \approx \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}$

$$
\varepsilon_{n} \leq \frac{(b-a)^{2}}{2} \cdot M_{1} \cdot \frac{1}{n}
$$

$$
\int_{0}^{\pi} f(x) d x=2 \approx[1.984,2.008,1.984]_{n=10}
$$

Trapezoid Sums

Trapezoid Sums

Instead of the degree 0 rectangle approximations to the function, use a linear degree 1 approximation. The area of the trapezoid is given by

$$
A_{T}=\frac{1}{2}\left[f\left(x_{k-1}\right)+f\left(x_{k}\right)\right] \Delta x_{k} .
$$

This gives an approximation for the integral

$$
\int_{a}^{b} f(x) d x \approx \sum_{k=1}^{n} \frac{1}{2}\left[f\left(x_{k-1}\right)+f\left(x_{k}\right)\right] \Delta x_{k}
$$

[Midpoint: measure height at average $x \mathrm{v}$. trapezoid: average the height measures]
The formula is often written as

$$
T_{n} \approx\left[f\left(x_{0}\right)+\left(2 \sum_{k=1}^{n-1} f\left(x_{k}\right)\right)+f\left(x_{n}\right)\right] \frac{\Delta x_{k}}{2} .
$$

Error for the trapezoid rule is

$$
\varepsilon_{n} \leq \frac{(b-a)^{3}}{12} \cdot M_{2} \cdot \frac{1}{n^{2}}
$$

Sample Trapezoid

Example

Let $f(x)=\sin (x)+\frac{1}{2} \sin (2 x)-\frac{1}{4} \sin (4 x)+\frac{1}{16} \sin (8 x)$ over $[0, \pi]$.

With an equipartition,

$$
\Delta x=\pi / 10 \approx 0.314
$$

Then

$$
T_{10}=\left[f(0)+\left(2 \sum_{k=1}^{10} f\left(\frac{k}{9} \pi\right)\right)+f(\pi)\right] \frac{\Delta x}{2}
$$

which gives

$$
T_{10}=1.984
$$

with absolute error of 0.016 .

Simpson's Rule

Simpson's Rule

We now move to a degree 2 approximation. The easiest way to have 3 data pts is to take the panels in pairs: instead of rectangle base $\left[x_{i}, x_{i+1}\right]$, use $\left[x_{i}, x_{i+1}, x_{i+2}\right]$. So we require an even number of panels. The area under the parabola is

$$
A_{S}=\frac{1}{3}\left[f\left(x_{i}\right)+4 f\left(x_{i+1}\right)+f\left(x_{i+2}\right)\right] \Delta x
$$

This gives a $2 n$-panel approximation for the integral

$$
\int_{a}^{b} f(x) d x \approx\left[\sum_{k=1}^{n} f\left(x_{2 k-2}\right)+4 f\left(x_{2 k-1}\right)+f\left(x_{2 k}\right)\right] \frac{\Delta x}{3}
$$

most often written as

$$
S_{2 n}=\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+4\left(f\left(x_{2 n-1}\right)+f\left(x_{2 n}\right)\right] \frac{\Delta x}{3} .\right.
$$

The error is bounded by

$$
\varepsilon_{n} \leq \frac{(b-a)^{5}}{180} \cdot M_{4} \cdot \frac{1}{n^{4}}
$$

Sample Simpson

Example

Let $f(x)=\sin (x)+\frac{1}{2} \sin (2 x)-\frac{1}{4} \sin (4 x)+\frac{1}{16} \sin (8 x)$ over $[0, \pi]$.

With a 10-panel equipartition,

$$
\Delta x=\pi / 10 \approx 0.3141592654
$$

Then, with $y_{i}=f\left(x_{i}\right)$,

$$
S_{10}=\frac{1}{3}\left[y_{0}+4 y_{1}+2 y_{2}+\cdots+4 y_{9}+y_{10}\right] \Delta x
$$

which gives

$$
S_{10}=2.000006784
$$

with absolute error of $6.78 \cdot 10^{-6}$.

A Maple Comparison

Approximating a Difficult Integral

Consider $\int_{1}^{2} \frac{10^{-4}}{\left(x-\frac{1}{2} \pi\right)^{2}+10^{-8}} d x$. This integrand has a sharp peak at $\pi / 2$.
The exact value of the integral (using the FToC) is

$$
\arctan \left(5 \cdot 10^{3} \cdot(4-\pi)\right)-\arctan \left(5 \cdot 10^{3} \cdot(2-\pi)\right) \approx 3.1411844701381
$$

Maple gives

$$
n=50
$$

$$
n=500
$$

$$
n=5000
$$

$\left[\begin{array}{cc}\text { left } & 0.0497133 \\ \text { right } & 0.0497180 \\ \text { midpoint } & 3.1210200 \\ \text { trapezoid } & 0.0497157 \\ \text { Simpson } & 2.0972500\end{array}\right] \quad\left[\begin{array}{cc}\text { left } & 0.541336 \\ \text { right } & 0.541336 \\ \text { midpoint } & 4.052010 \\ \text { trapezoid } & 0.541336 \\ \text { Simpson } & 2.881790\end{array}\right] \quad\left[\begin{array}{cc}\text { left } & 3.42282 \\ \text { right } & 3.42282 \\ \text { midpoint } & 2.88243 \\ \text { trapezoid } & 3.42282 \\ \text { Simpson } & 3.06256\end{array}\right]$

To achieve a relative error below 1% requires approximately $n \geq 6000$.

The Chart

Quadrature	"Height"	Error Bound ${ }^{2}$
Left end point	$f\left(x_{i}\right)$	$\frac{(b-a)^{2}}{2} \cdot M_{1} \cdot \frac{1}{n}=O(h)$
Right end point	$f\left(x_{i+1}\right)$	$\frac{(b-a)^{2}}{2} \cdot M_{1} \cdot \frac{1}{n}=O(h)$
Trapezoid Rule	$\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}$	$\frac{(b-a)^{3}}{12} \cdot M_{2} \cdot \frac{1}{n^{2}}=O\left(h^{2}\right)$
Midpoint	$f\left(\frac{x_{i}+x_{i+1}}{2}\right)$	$\frac{(b-a)^{3}}{24} \cdot M_{2} \cdot \frac{1}{n^{2}}=O\left(h^{2}\right)$
Simpson's Rule	$\frac{f\left(x_{i}\right)+4 f\left(x_{i+1}\right)+f\left(x_{i+2}\right)}{3}$	$\frac{(b-a)^{5}}{180} \cdot M_{4} \cdot \frac{1}{n^{4}}=O\left(h^{4}\right)$

where $M_{i} \geq \max \left|f^{(i)}(x)\right|$ and $h=1 / n$.
${ }^{2}$ An approximation without an error bound has little to no value!

Gaussian Quadrature

Johann Carl Friedrich Gauss

About 1815, while Gauss was finishing constructing an astronomical observatory, he wrote a paper ${ }^{3}$ on approximating integrals. Gauss's technique was studied and extended by Christoffel in 1858. There are several good ways to develop this method. We'll use the easiest ...

In Search of Improvements

Write the rules we've seen as sums:
Left endpt: $L_{n}=\frac{1}{n} f\left(x_{0}\right)+\frac{1}{n} f\left(x_{1}\right)+\cdots+\frac{1}{n} f\left(x_{n-1}\right)$
Right endpt: $R_{n}=\frac{1}{n} f\left(x_{1}\right)+\frac{1}{n} f\left(x_{2}\right)+\cdots+\frac{1}{n} f\left(x_{n}\right)$
Midpoint: $M_{n}=\frac{1}{n} f\left(x_{m_{1}}\right)+\frac{1}{n} f\left(x_{m_{2}}\right)+\cdots+\frac{1}{n} f\left(x_{m_{n}}\right)$
Trapezoid: $T_{n}=\frac{1}{2 n} f\left(x_{0}\right)+\frac{1}{n} f\left(x_{1}\right)+\cdots+\frac{1}{n} f\left(x_{n-1}\right)+\frac{1}{2 n} f\left(x_{n}\right)$
Simpson's: $S_{n}=\frac{1}{3 n} f\left(x_{0}\right)+\frac{4}{3 n} f\left(x_{1}\right)+\frac{2}{3 n} f\left(x_{2}\right)+\cdots+\frac{4}{3 n} f\left(x_{n-1}\right)+\frac{1}{3 n} f\left(x_{n}\right)$

Patterns

Observations

- Each of the formulas has the same form: a weighted sum

$$
A_{n}=w_{1} \cdot f\left(x_{1}\right)+w_{2} \cdot f\left(x_{2}\right)+\cdots+w_{n} \cdot f\left(x_{n}\right)
$$

with different sets of weights w_{i} and different sets of nodes x_{i}.

- Any closed interval can be mapped to and from $[-1,1]$, so we can focus just on $\int_{-1}^{1} f(x) d x . \quad\left[T(t)=2 \frac{t-a}{b-a}-1 ; \quad T^{-1}(t)=a\left(\frac{1-t}{2}\right)+b\left(\frac{1+t}{2}\right)\right]$
- Gauss posed the question: Is there a "best choice" of weights $\left\{w_{i}\right\}$ and nodes $\left\{x_{i}\right\}$? Do nodes have to be equidistant?
- The answer depends on what "best" means.

Since we have $2 n$ unknowns w_{i} and x_{i}, let's look for a set that integrates a $2 n-1$ degree polynomial exactly. (Remember: a $2 n-1$ degree polynomial has $2 n$ coefficients.)

Sampling 3

Example (Third Degree)

Set $n=3$. Determine the choice of w_{i} and of x_{i} so that

$$
\int_{-1}^{1} x^{p} d x=\sum_{k=1}^{3} w_{k} \cdot x_{k}^{p}
$$

exactly for $p=0,1, \ldots, 5=2 \cdot 3-1$.
The range for the power p gives us six equations:

$$
\left\{\begin{array}{l}
w_{1}+w_{2}+w_{3}=2 \\
w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}=0 \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2}+w_{3} x_{3}^{2}=\frac{2}{3} \\
w_{1} x_{1}^{3}+w_{2} x_{2}^{3}+w_{3} x_{3}^{3}=0 \\
w_{1} x_{1}^{4}+w_{2} x_{2}^{4}+w_{3} x_{3}^{4}=\frac{2}{5} \\
w_{1} x_{1}^{5}+w_{2} x_{2}^{5}+w_{3} x_{3}^{5}=0
\end{array}\right\} \Longrightarrow\left\{\begin{array}{ccc}
x_{1}=-\sqrt{\frac{3}{5}}, & x_{2}=0, & x_{3}=\sqrt{\frac{3}{5}} \\
w_{1}=\frac{5}{9}, & w_{2}=\frac{8}{9}, & w_{3}=\frac{5}{9}
\end{array}\right.
$$

Our Gaussian quadrature is $\quad G_{3}(f)=\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)$.

Testing Gauss

Random Polynomials

Generate and test a random 5th-degree polynomial.

$$
\begin{aligned}
& \mathrm{p}:=\text { unapply (sort }(\text { randpoly }(\mathrm{x}, \text { degree }=5), \mathrm{x}), \mathrm{x}) \\
& \qquad x \rightarrow-7 x^{5}+22 x^{4}-55 x^{3}-94 x^{2}+87 x-56 \\
& \mathrm{G} 3:=5 / 9 * \mathrm{p}(-\operatorname{sqrt}(3 / 5))+8 / 9 * \mathrm{p}(0)+5 / 9 * \mathrm{p}(\operatorname{sqrt}(3 / 5)) \\
& -\quad-\frac{2488}{15} \\
& \text { Int }(\mathrm{p}(\mathrm{x}), \mathrm{x}=-1 . \mathrm{I})=\operatorname{int}(\mathrm{p}(\mathrm{x}), \mathrm{x}=-1 . .1) \\
& \qquad \int_{-1}^{1} p(x) d x=-\frac{2488}{15}
\end{aligned}
$$

Generate and test a random 7th-degree polynomial.

$$
\begin{aligned}
& \mathrm{q}:=\operatorname{unapply}(\text { sort }(\text { randpoly }(\mathrm{x}, \operatorname{degree}=7), \mathrm{x}), \mathrm{x}) \\
& \qquad x \rightarrow 97 x^{7}-73 x^{6}-4 x^{5}-83 x^{3}-10 x-62 \\
& \operatorname{int}(\mathrm{q}(\mathrm{x}), \mathrm{x}=-1.1)=5 / 9 * \mathrm{q}(-\operatorname{sqrt}(3 / 5))+8 / 9 * \mathrm{q}(0)+5 / 9 * \mathrm{q}(\operatorname{sqrt}(3 / 5)) \\
& \frac{722}{7}=\frac{2662}{25}
\end{aligned}
$$

Gaussian Properties

Theorem (Error Estimate)

Let f have $2 n$ continuous derivatives. Then for $\varepsilon_{n}=\left|G_{n}-\int_{-1}^{1} f(x) d x\right|$,

$$
\varepsilon_{n} \leq \frac{\pi}{2^{2 n} \cdot(2 n)!} \cdot M_{2 n}
$$

where $M_{2 n} \geq \max \left|f^{(2 n)}(x)\right|$.

Values of Gaussian Weights and Nodes

There are numerous sources online, e.g.,:

1. The classic Abramowitz and Stegun Handbook (see the entire book)
2. Holoborodko or Kamermans

We could calculate the values directly:
Set $P_{n}(x)=\frac{1}{2^{n} n!} \cdot \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]$ (the Legendre polynomials). Then

$$
\left\{x_{i}\right\}_{i=1}^{n}=\left\{\text { zeros of } P_{n}\right\} \quad \text { and } \quad w_{i}=\frac{2}{\left(1-x_{i}^{2}\right)\left[P_{n}^{\prime}\left(x_{i}\right)\right]^{2}}
$$

Gauss-Kronrod Quadrature

Aleksandr Kronrod's Idea (1964)

One difficulty in Gaussian quadrature is that increasing the number of nodes requires recomputing all the values of

- nodes - weights - function evaluations

Kronrod ${ }^{4}$ discovered he could interlace $n+1$ new nodes with n original Gaussian nodes and have a rule of order $3 n+1$. A $2 n+1$ node Gaussian quadrature would have order $4 n+1$, but with significant extra computation for an increase of only n in order over Kronrod's method.
[Bad news: calculating the nodes and weights is way beyond the scope of our class. The nodes are the roots of the Stieltjes or Stieltjes-Legendre polynomials. (App IV)]

Gauss-Kronrod quadrature is used in Maple, Mathematica, MATLAB, and Sage; it's included in the QUADPACK library, the GNU Scientific Library, the NAG Numerical Libraries, and in R. GK ${ }_{7,15}$ is the basis of numerical integration in TI calculators. (Casio uses Simpson's rule; HP, adaptive Romberg.)

[^6]
Gauss-Kronrod Quadrature in Practice

GK 7,15 (1989)

A widely used implementation is based on a Gaussian quadrature with 7 nodes. Kronrod adds 8 to total 15 nodes.

$$
\begin{aligned}
& G K_{7,15} \text { on }[-1,1] \\
& G_{7}=\sum_{k=1}^{7} w_{k} f\left(x_{k}\right) \\
& G K_{7,15}=\sum_{j=1}^{15} w_{j} f\left(x_{j}\right) \\
& \varepsilon_{7,15} \approx\left|G_{7}-G K_{7,15}\right| \\
& \text { or, in practice, use }{ }^{5} \\
& \approx\left[200\left|G_{7}-G K_{7,15}\right|\right]^{3 / 2}
\end{aligned}
$$

[^7]
GK Sample

Example

Find $\int_{-1}^{1} e^{-x^{2}} d x$.
Using Maple gives:

$$
\begin{gathered}
G_{7}=\sum_{k=1}^{7} w_{k} f\left(x_{k}\right)=1.49364828886941 \\
G K_{7,15}=\sum_{k=1}^{15} w_{k} f\left(x_{k}\right)=1.49364826562485 \\
\varepsilon_{7,15} \approx\left|G_{7}-G K_{7,15}\right|=2.324456 \cdot 10^{-8} \\
\operatorname{int}(\mathrm{f}(\mathrm{x}), \mathrm{x}=-1 \ldots 1, \text { numeric }) \approx 1.49364826562485=G K_{7,15}
\end{gathered}
$$

See Maple's Online Help for int/numeric to see the methods available.

A Class Exercise

Easy, but Hard

Set $f(x)=x-\lfloor x\rfloor$. Calculate $\int_{0}^{6.4} f(x) d x$.
Set $n=10$. Find

1. The exact value

2. Left endpoint approximation \square
3. Right endpoint approximation
4. Midpoint approximation
5. Trapezoid rule approximation

6. Simpson's rule approximation

7. Gauss 7 quadrature \square
8. Gaussian-Kronrod 7-15 quadrature \square

A Menagerie of Test Integrals

Integrals for Testing Numerical Quadratures, ${ }^{6}$ ।

Lyness:

1. $I(\lambda)=\int_{1}^{2} \frac{0.1}{(x-\lambda)^{2}+0.01} d x$

Piessens, de Doncker-Kapenga, Überhuber, \& Kahaner:

$$
\begin{array}{lr}
\text { 2. } \int_{0}^{1} x^{\alpha} \log \left(\frac{1}{x}\right) d x=\frac{1}{(1+\alpha)^{2}} & \text { 5. } \int_{0}^{1}\left|x-\frac{1}{3}\right|^{\alpha} d x=\frac{\left(\frac{2}{3}\right)^{\alpha+1}+\left(\frac{1}{3}\right)^{\alpha+1}}{1+\alpha} \\
\text { 3. } \int_{0}^{1} \frac{4^{-\alpha}}{\left(x-\frac{\pi}{4}\right)^{2}+16^{-\alpha}} d x & \text { 6. } \int_{0}^{1}\left|x-\frac{\pi}{4}\right|^{\alpha} d x \\
\left.=\begin{array}{ll}
=\tan ^{-1}\left((4-\pi) 4^{\alpha-1}\right) & =\frac{\left(1-\frac{\pi}{4}\right)^{\alpha+1}+\left(\frac{\pi}{4}\right)^{\alpha+1}}{1+\alpha} \\
\quad+\tan ^{-1}\left(\pi 4^{\alpha-1}\right) & \text { 7. } \int_{-1}^{+1} \frac{1}{\sqrt{1-x^{2}}} \frac{1}{1+x+2^{-\alpha}} d x \\
\text { 4. } \int_{0}^{\pi} \cos \left(2^{\alpha} \sin (x)\right) d x=\pi J_{0}\left(2^{\alpha}\right) &
\end{array}\right) \frac{\pi}{\sqrt{\left(1+2^{-\alpha}\right)^{2}-1}}
\end{array}
$$

${ }^{6}$ D. Zwillinger, Handbook of Integration p. 272, (A K Peters/CRC Press, 1992).

Test Integrals, II

Integrals for Testing Numerical Quadratures, II

Piessens et al. (continued):

$$
\text { 8. } \begin{aligned}
\int_{0}^{\pi / 2} & \sin ^{\alpha-1}(x) d x \\
= & 2^{\alpha-2} \frac{\Gamma^{2}\left(\frac{\alpha}{2}\right)}{\Gamma(\alpha)}
\end{aligned}
$$

9. $\int_{0}^{1} \log ^{\alpha-1}\left(\frac{1}{x}\right) d x=\Gamma(\alpha)$
10. $\int_{0}^{1} \frac{\cos \left(2^{\alpha} x\right)}{\sqrt{x(1-x)}} d x$

$$
=\pi \cos \left(2^{\alpha-1}\right) \mathrm{J}_{0}\left(2^{\alpha-1}\right)
$$

11. $\int_{0}^{\infty} x^{2} e^{-2^{-\alpha} x} d x=2^{3 \alpha+1}$
12. $\int_{0}^{\infty} \frac{x^{\alpha-1}}{(1+10 x)^{2}} d x=\frac{(1-\alpha) \pi}{10^{\alpha} \sin (\pi \alpha)}$

Berntsen, Espelid, \& Sørevik:
13. $\int_{0}^{1}\left|x-\frac{1}{3}\right|^{-1 / 2} d x \quad$ (singularity)
15. $\int_{0}^{1} e^{2|x-1 / 3|} d x$
(C_{0} function)
14. $\int_{-1}^{1} U(x) e^{x / 2} d x$
(discontinuity)
16. $\int_{1}^{2} \frac{10^{-4}}{\left(x-\frac{\pi}{2}\right)^{2}+10^{-8}} d x$
(sharp peak)

Appendix IV: Legendre \& Stieltjes Polynomials for $\mathrm{GK}_{7,15}$

The Polynomials of $\mathrm{GK}_{7,15}$

The Gaussian nodes for G_{7} are the roots of the Legendre polynomial p_{7}

$$
p_{7}(x)=\frac{429}{16} x^{7}-\frac{693}{16} x^{5}+\frac{315}{16} x^{3}-\frac{35}{16} x
$$

The additional nodes Kronrod adds for $\mathrm{GK}_{7,15}$ are the roots of the Stieltjes polynomial E_{8} (from solving the system: $\left\{\int_{-1}^{1} p_{7}(x) E_{8}(x) x^{k} d x=0\right.$ for $\left.k=0 . .7\right\}$)

$$
E_{8}(x)=c\left[\frac{4854324041}{52932681} x^{8}-\frac{1142193892}{5881409} x^{6}+\frac{765588166}{5881409} x^{4}-\frac{501576364}{17644227} x^{2}+1\right] .
$$

Problems

Exercises

For each of the following functions, investigate the integrals using: left endpoint, midpoint, trapezoid, and Simpson's rules.

1. $S(x)=\int_{0}^{x}\left[\sin \left(t^{2} / 2\right)-\sqrt{\pi} /(2 x)\right] d t$
2. Lyness' integral $I(\lambda)=\int_{1}^{2} \frac{0.1}{(x-\lambda)^{2}+0.01} d x$ for $\lambda=\pi / 2$
3. Modified Piessens' integral $\int_{-1}^{1}\left|x^{2}-\frac{\pi^{2}}{16}\right|^{0.1} d x$

Investigate Gaussian and Gauss-Kronrod quadrature (after transforming the interval to $[-1,1]$) of the integral:
4. $\int_{1}^{2} \frac{10^{-4}}{\left(x-\frac{\pi}{2}\right)^{2}+10^{-8}} d x$
5. Explain why the integrals

$$
\int_{-1}^{1} p_{7}(x) d x \quad \int_{-1}^{1} E_{8}(x) d x \quad \int_{-1}^{1} p_{7}(x) \cdot E_{8}(x) d x
$$

are all equal to zero. Use numerical methods to approximate each.

Links and Others

Wikipedia entries:

- Newton-Cotes formulas
- Romberg's method
- Clenshaw-Curtis integration
- Cubature

More information:

- Adaptive Simpson's Rule
- Monte Carlo Integration
- Legendre Polynomials
- Chebyshev Polynomials

See also: MathWorld (Wolfram Research) and Interactive Educational Modules in Scientific Computing (U of I)

Investigate:

- Boole's Rule
- adaptive quadrature
- orthogonal polynomials
- Vandermonde Matrix
- Maple's evalf/Int command
- The Maple command ApproximateInt in the Student [Calculus1] package
- MATLAB's integral command
- Cubature

VI. Polynomial Interpolation

Sections

1. Polynomial Interpolation 141
2. Lagrange Interpolation 143
3. Interlude: Bernstein Polynomials 149
4. Newton Interpolation 152
5. Two Comparisons 156
6. Interlude: Splines 158
Exercises 159
Links and Others 161

VI. Polynomial Interpolation

What Is Polynomial Interpolation?

An interpolating polynomial $p(x)$ for a set of points \mathscr{S} is a polynomial that goes through each point of \mathscr{S}. That is, for each point $P_{i}=\left(x_{i}, y_{i}\right)$ in the set, $p\left(x_{i}\right)=y_{i}$.
Typical applications include:

Approximating Functions TrueType Fonts (2nd deg) Fast Multiplication Cryptography
 PostScript Fonts (3rd deg)
 Data Compression

Since each data point determines the value of one polynomial coefficient, an n-point data set has an $n-1$ degree interpolating polynomial.

Free Sample

Finding an Interpolating Polynomial

Let $\mathscr{S}=\{[-2,1],[-1,-1],[0,1],[1,-1],[2,1]\}$.

1. Since \mathscr{S} has 5 points, we compute a 4 th degree polynomial

$$
p_{4}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}
$$

2. Substitute the values of \mathscr{S} into p_{4}; write the results as a system of linear equations.

$$
\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{0}-2 a_{1}+4 a_{2}-8 a_{3}+16 a_{4} \\
a_{0}-a_{1}+a_{2}-a_{3}+a_{4} \\
a_{0} \\
a_{0}+a_{1}+a_{2}+a_{3}+a_{4} \\
a_{0}+2 a_{1}+4 a_{2}+8 a_{3}+16 a_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & -2 & 4 & -8 & 16 \\
1 & -1 & 1 & -1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]
$$

3. Solve via your favorite method: $\quad p_{4}(x)=\frac{2}{3} x^{4}-\frac{8}{3} x^{2}+1$.

Toward a Better Way: Lagrange Interpolation

Definition

Knots or Nodes: The x-values of the interpolation points.
Lagrange Fundamental Polynomial: Given a set of $n+1$ knots, define

$$
\begin{aligned}
L_{i}(x) & =\prod_{\substack{k=0 . . n \\
k \neq i}} \frac{x-x_{k}}{x_{i}-x_{k}} \\
& =\frac{x-x_{0}}{x_{i}-x_{0}} \times \cdots \times \frac{x-x_{i-1}}{x_{i}-x_{i-1}} \times \frac{x-x_{i+1}}{x_{i}-x_{i+1}} \times \cdots \times \frac{x-x_{n}}{x_{i}-x_{n}}
\end{aligned}
$$

Lagrange Interpolating Polynomial: Given a set of $n+1$ data points $\left(x_{k}, y_{k}\right)$, define

$$
p_{n}(x)=\sum_{k=0}^{n} y_{k} L_{k}(x)
$$

Sampling a Better Way

Example (Lagrange Fundamental Polynomials)

The set of knots $[-2,-1,0,1,2]$ gives

$$
\begin{aligned}
& L_{0}(x)=\frac{\frac{x-(-2)}{-2-(-2)}}{\frac{\text { delete }}{}} \cdot \frac{x-(-1)}{-2-(-1)} \cdot \frac{x-0}{-2-0} \cdot \frac{x-1}{-2-1} \cdot \frac{x-2}{-2-2} \\
& L_{1}(x)=\frac{x-(-2)}{-1-(-2)} \cdot \frac{x-(-1)}{-1-(-1)} \cdot \frac{x-0}{-1-0} \cdot \frac{x-1}{-1-1} \cdot \frac{x-2}{-1-2} \\
& L_{2}(x)=\frac{x-(-2)}{0-(-2)} \cdot \frac{x-(-1)}{0-(-1)} \cdot \frac{x-0}{0-0} \cdot \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} \\
& L_{3}(x)=\frac{x-(-2)}{1-(-2)} \cdot \frac{x-(-1)}{1-(-1)} \cdot \frac{x-0}{1-0} \cdot \frac{x-1}{1-1} \cdot \frac{x-2}{1-2} \\
& L_{4}(x)=\frac{x-(-2)}{2-(-2)} \cdot \frac{x-(-1)}{2-(-1)} \cdot \frac{x-0}{2-0} \cdot \frac{x-1}{2-1} \cdot \frac{x-2}{2-2}
\end{aligned}
$$

Graph the L_{k} !

Sampling a Better Way

Example

Let $\mathscr{S}=\{[-2,1],[-1,-1],[0,1],[1,-1],[2,1]\}$.
We have $\left[x_{k}\right]=[-2,-1,0,1,2]$ and $\left[y_{k}\right]=[1,-1,1,-1,1]$. Then $p_{4}(x)=\sum_{k=0}^{4} y_{k} L_{k}(x)$. So

$$
\begin{aligned}
p_{4}(x)= & (1) \cdot \frac{x+1}{-2+1} \cdot \frac{x-0}{2-2} \cdot \frac{x-1}{-2-1} \cdot \frac{x-2}{-2-2} \\
& +(-1) \cdot \frac{x+2}{-1+2} \cdot \frac{x-0}{-1-0} \cdot \frac{x-1}{-1-1} \cdot \frac{x-2}{-1-2} \\
& +(1) \cdot \frac{x+2}{0+2} \cdot \frac{x+1}{0+1} \cdot \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} \\
& +(-1) \cdot \frac{x+2}{1+2} \cdot \frac{x+1}{1+1} \cdot \frac{x-0}{1-0} \cdot \frac{x-2}{1-2} \\
& +(1) \cdot \frac{x+2}{2+2} \cdot \frac{x+1}{2+1} \cdot \frac{x-0}{2-0} \cdot \frac{x-1}{2-1} .
\end{aligned}
$$

Then simplified $p_{4}(x)=\frac{2}{3} x^{4}-\frac{8}{3} x^{2}+1$.

An "Easier" L_{k} Formula

Compact Expressions

For a set $\left[x_{k}\right]$ of $n+1$ knots, we defined $L_{i}(x)=\prod_{\substack{k=0 . . n \\ k \neq i}} \frac{x-x_{k}}{x_{i}-x_{k}}$. This formula is computationally intensive.
Set $\omega(x)=\prod_{k=0}^{n}\left(x-x_{k}\right)$.

1. The numerator of L_{i} is $\omega(x) /\left(x-x_{i}\right)$.
2. The denominator of L_{i} is $\omega(x) /\left(x-x_{i}\right)$ evaluated at x_{i}. Rewrite as $\frac{\omega(x)}{x-x_{i}}=\frac{\omega(x)-\omega\left(x_{i}\right)}{x-x_{i}}$. Take the limit as $x \rightarrow x_{i}$:

$$
\lim _{x \rightarrow x_{i}} \frac{\omega(x)-\omega\left(x_{i}\right)}{x-x_{i}}=\omega^{\prime}\left(x_{i}\right)
$$

Thus $L_{i}(x)=\frac{\omega(x)}{\left(x-x_{i}\right) \omega^{\prime}\left(x_{i}\right)}$. A very compact formula!

Properties of the L_{k} 's

Proposition

For the Lagrange interpolating polynomial $p_{n}(x)=\sum_{k=0}^{n} y_{k} L_{k}(x)$:

1. $p_{n}(x)$ is the unique nth degree polynomial s.t. $p\left(x_{k}\right)=y_{k}$ for $k=0 . . n$.
2. $L_{k}\left(x_{j}\right)=\delta_{k j}=\left\{\begin{array}{ll}1 & j=k \\ 0 & j \neq k\end{array}\right.$. (See Kronecker delta.)
3. $\sum_{k=0}^{n} L_{k}(x)=1$.
4. If $q(x)$ is a polynomial of degree $\leq n$ with $y_{k}=q\left(x_{k}\right)$, then $q \equiv p_{n}$.
5. The set $\left\{L_{k}(x): k=0 . .(n-1)\right\}$ is a basis of \mathbb{P}_{n-1}.

Theorem (Lagrange Interpolation Error)

If $f \in \mathscr{C}^{n+1}[a, b]$ and $\left\{x_{k}\right\} \in[a, b]$, then

$$
\varepsilon_{n}=\left|f(x)-p_{n}(x)\right| \leq \frac{(b-a)^{n+1}}{(n+1)!} \max \left|f^{(n+1)}(x)\right|
$$

Drawbacks

More Knots

To decrease the error, use more knots. But ... all the $L_{k}(x)$ change.

1. Set $\left\{x_{k}\right\}=\{-2,1,2\}$. Then

$$
\begin{aligned}
& L_{0}(x)=\frac{x-1}{-2-1} \cdot \frac{x-2}{-2-2}=\frac{1}{12} x^{2}-\frac{1}{4} x+\frac{1}{6} \\
& L_{1}(x)=\frac{x+2}{1+2} \cdot \frac{x-2}{1-2}=-\frac{1}{3} x^{2}+\frac{4}{3} \\
& L_{2}(x)=\frac{x+2}{2+2} \cdot \frac{x-1}{2-1}=\frac{1}{4} x^{2}+\frac{1}{4} x-\frac{1}{2} .
\end{aligned}
$$

2. Set $\left\{x_{k}\right\}=\{-2,-1,1,2\}$. Then

$$
\begin{aligned}
& L_{0}(x)=\frac{x+1}{-2+1} \cdot \frac{x-1}{-2-1} \cdot \frac{x-2}{-2-2}=-\frac{1}{12} x^{3}+\frac{1}{6} x^{2}+\frac{1}{12} x-\frac{1}{6} \\
& L_{1}(x)=\frac{x+2}{-1+2} \cdot \frac{x-1}{-1-1} \cdot \frac{x-2}{-1-2} \\
& =\frac{1}{16} x^{3}-\frac{1}{6} x^{2}-\frac{2}{3} x+\frac{2}{3} \\
& L_{2}(x)=\frac{x+2}{1+2} \cdot \frac{x+1}{1+1} \cdot \frac{x-2}{1-2}=-\frac{1}{6} x^{3}-\frac{1}{6} x^{2}+\frac{2}{3} x+\frac{2}{3} \\
& L_{3}(x)=\frac{x+2}{2+2} \cdot \frac{x+1}{2+1} \cdot \frac{x-1}{2-1} \quad=\frac{1}{12} x^{3}+\frac{1}{6} x^{2}-\frac{1}{12} x-\frac{1}{6}
\end{aligned}
$$

Interlude: Bernstein Polynomials

Definition (Bernstein Polynomials of f)

Bernstein Basis Polynomials: $b_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$ for $k=0 . . n$
Bernstein Polynomial of f : Let $f:[0,1] \rightarrow \mathbb{R}$. Then

$$
B_{n}(f)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

Note: If $g:[a, b] \rightarrow \mathbb{R}$, then use $f(x)=g(a+(b-a) x)$.

Example

Let $f(x)=x^{3}$ for $x \in[0,1]$. Then $B_{n}(f)=\sum_{k=0}^{n} \frac{k^{3}}{n^{3}}\binom{k}{n} x^{k}(1-x)^{n-k}$.

$$
\begin{array}{ll}
B_{1}(x)=x & B_{2}(x)=\frac{1}{4} x+\frac{3}{4} x^{2} \\
B_{3}(x)=\frac{1}{9} x+\frac{2}{3} x^{2}+\frac{1}{9} x^{3} & B_{4}(x)=\frac{1}{16} x+\frac{9}{16} x^{2}+\frac{3}{8} x^{3}
\end{array}
$$

Bernstein Basis Functions

Bernstein Basis Functions, $n=3$

$$
\begin{array}{llll}
\mathrm{k}=0: & b_{3,0}(x)=(1-x)^{3} & \mathrm{k}=1: & b_{3,1}(x)=3 x(1-x)^{2} \\
\mathrm{k}=2: & b_{3,2}(x)=3 x^{2}(1-x) & \mathrm{k}=3: & b_{3,3}(x)=x^{3}
\end{array}
$$

Bernstein and Lagrange
Example $\left(f(x)=\operatorname{Heaviside}\left(x-\frac{1}{2}\right)\right)$

p_{4}

Newton Interpolation

Newton Basis Polynomials

In order to make it easy to add a new knot, we change the set of basis polynomials. Given a set of $n+1$ knots, $\left\{x_{k}\right\}$, set

$$
\begin{aligned}
& N_{0}(x)=1 \\
& N_{1}(x)=\left(x-x_{0}\right) \\
& N_{2}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& N_{3}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& \quad \vdots \\
& N_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

Now let

$$
P_{n}(x)=\sum_{k=0}^{n} a_{k} N_{k}(x)
$$

Note that $\mathscr{B}_{N}=\left\{N_{k}(x) \mid k=0 . . n\right\}$ forms a basis for \mathbb{P}_{n}.

The Newton Coefficients

Calculating the $a_{k}{ }^{\prime}$ s
For a set of $n+1$ data points $\left\{\left[x_{k}, y_{k}\right]\right\}$, define the (forward) divided differences recursively as

$$
\begin{aligned}
{\left[y_{0}\right] } & =y_{0} \\
{\left[y_{0}, y_{1}\right] } & =\frac{\left[y_{1}\right]-\left[y_{0}\right]}{x_{1}-x_{0}} \\
{\left[y_{0}, y_{1}, y_{2}\right] } & =\frac{\left[y_{1}, y_{2}\right]-\left[y_{0}, y_{1}\right]}{x_{2}-x_{0}} \\
& \vdots
\end{aligned}
$$

Then the Newton interpolating polynomial is

$$
\begin{aligned}
P_{n}(x)= & {\left[y_{0}\right]+\left[y_{0}, y_{1}\right]\left(x-x_{0}\right)+\left[y_{0}, y_{1}, y_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) } \\
& +\left[y_{0}, y_{1}, y_{2}, y_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+\ldots \\
= & \sum_{k=0}^{n}\left[y_{0}, \ldots, y_{k}\right] N_{k}(x) .
\end{aligned}
$$

First Sample

A Used Polynomial

Let $\mathscr{S}=\{[-2,1],[-1,-1],[0,1],[1,-1],[2,1]\}$.
Begin by building a difference tableau.

x	-2	-1	0	1	2
y	1	-1	1	-1	1
$\left[y_{0}\right]$	1	-1	1	-1	1
$\left[y_{0}, y_{1}\right]$		-2	2	-2	2
$\left[y_{0}, y_{1}, y_{2}\right]$			2	-2	2
$\left[y_{0}, y_{1}, y_{2}, y_{3}\right]$				$-\frac{4}{3}$	$\frac{4}{3}$
$\left[y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right]$					$\frac{2}{3}$

Then $P_{4}(x)=\sum_{k=0}^{n}\left[y_{0}, \ldots, y_{k}\right] N_{k}(x)$

$$
\begin{gathered}
=1-2(x+2)+2(x+2)(x+1)-\frac{4}{3}(x+2)(x+1)(x)+\frac{2}{3}(x+2)(x+1)(x)(x-1) \\
P_{4}(x)=1-\frac{8}{3} x^{2}+\frac{2}{3} x^{4} .
\end{gathered}
$$

Second Sample

The Heaviside Function
Set $\mathscr{S}=\left\{[0,0],\left[\frac{1}{5}, 0\right],\left[\frac{2}{5}, 0\right],\left[\frac{3}{5}, 1\right],\left[\frac{4}{5}, 1\right],[1,1]\right\}$.
Begin by building a difference tableau.

x	0	0.2	0.4	0.6	0.8	1
y	0	0	0	1	1	1
$\left[y_{0}, y_{1}\right]$		0	0	5	0	0
$\left[y_{0}, y_{1}, y_{2}\right]$			0	$\frac{25}{2}$	$-\frac{25}{2}$	0
$\left[y_{0}, y_{1}, y_{2}, y_{3}\right]$				$\frac{125}{6}$	$-\frac{125}{3}$	$\frac{125}{6}$
$\left[y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right]$					$-\frac{625}{8}$	$\frac{625}{8}$
$\left[y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right]$						$\frac{625}{4}$

Then $P_{5}(x)=\sum_{k=0}^{5}\left[y_{0}, \ldots, y_{k}\right] N_{k}(x)$

$$
P_{5}(x)=\frac{137}{12} x-\frac{875}{8} x^{2}+\frac{1000}{3} x^{3}-\frac{3125}{8} x^{4}+\frac{625}{4} x^{5} .
$$

Two Comparisons

Example ($\cos (\pi x)$ v. Lagrange, Newton, \& Taylor)

Lagrange: $L_{4}=\frac{(x+1)(x)(x-1)(x-2)}{24}+\frac{(x+2)(x)(x-1)(x-2)}{6}+\frac{(x+2)(x+1)(x-1)(x-2)}{4}$ $+\frac{(x+2)(x+1)(x)(x-2)}{6}+\frac{(x+2)(x+1)(x)(x-1)}{24}$
Newton: $N_{4}=1-2(x+2)+2(x+2)(x+1)-\frac{4}{3}(x+2)(x+1)(x)$

$$
+\frac{2}{3}(x+2)(x+1)(x)(x-1)
$$

Taylor: $T_{4}=1-\frac{\pi^{2}}{2} x^{2}+\frac{\pi^{4}}{24} x^{4}$

Second Comparison

Shifted Heaviside: $f(x)=\operatorname{Heaviside}(x-1 / 2)$ on $[0,1]$

Lagrange: $L_{5}=\frac{3125}{12}(x)\left(x-\frac{1}{5}\right)\left(x-\frac{2}{5}\right)\left(x-\frac{4}{5}\right)(x-1)$

$$
\begin{aligned}
& -\frac{3125}{24}(x)\left(x-\frac{1}{5}\right)\left(x-\frac{2}{5}\right)\left(x-\frac{3}{5}\right)(x-1) \\
& +\frac{625}{24}(x)\left(x-\frac{1}{5}\right)\left(x-\frac{2}{5}\right)\left(x-\frac{3}{5}\right)\left(x-\frac{4}{5}\right)
\end{aligned}
$$

Newton: $N_{5}=\frac{125}{6}(x)\left(x-\frac{1}{5}\right)\left(x-\frac{2}{5}\right)$

$$
\begin{aligned}
& -\frac{625}{8}(x)\left(x-\frac{1}{5}\right)\left(x-\frac{2}{5}\right)\left(x-\frac{3}{5}\right) \\
& +\frac{625}{4}(x)\left(x-\frac{1}{5}\right)\left(x-\frac{2}{5}\right)\left(x-\frac{3}{5}\right)\left(x-\frac{4}{5}\right)
\end{aligned}
$$

Bernstein: $B_{5}=10 x^{3}(1-x)^{2}+5 x^{4}(1-x)+x^{5}$
Taylor: T_{5} centered at the middle $a=\frac{1}{2}$: Not possible. (Why?)
Centered at $a \in\left[0, \frac{1}{2}\right), T_{5}=0$
Centered at $a \in\left(\frac{1}{2}, 1\right], T_{5}=1$

Interlude: Splines

Splines

Lagrange and Newton polynomials oscillate excessively when there are a number of closely spaced knots. To alleviate the problem, use "splines," piecewise, smaller-degree polynomials with conditions on their derivatives. The two most widely used splines:
Bézier splines are piecewise Bernstein polynomials [Casteljau (1959) and Bézier (1962)].
Cubic B-splines are piecewise cubic polynomials with second derivative equal to zero at the joining knots [Schoenberg (1946)].

Along with engineering, drafting, and CAD, splines are used in a wide variety of fields. TrueType fonts use 2-D quadratic Bézier curves. PostScript and MetaFont use 2-D cubic Bézier curves.

Exercises, I

Exercises

For each of the functions given in 1. to $5 .:$

- Find the Lagrange polynomial of order 6
- Find the Newton polynomial of order 6
- Find the Bernoulli polynomial of order 6 and plot the interpolation polynomial with the function.

1. $f(x)=\sin (2 \pi x)$ on $[0,1]$
2. $g(x)=\ln (x+1)$ on $[0,2]$
3. $h(x)=\tan (\sin (x))$ on $[-\pi, \pi]$

$$
\begin{aligned}
& \text { 4. } k(x)=\frac{x}{x^{2}+1} \text { on }[-10,10] \\
& \text { 5. } S(x)=\int_{0}^{x}\left[\sin \left(\frac{1}{2} t^{2}\right)-\frac{\sqrt{\pi}}{2 x}\right] d t \\
& \text { for } x \in[0,10]
\end{aligned}
$$

6. Find an interpolating polynomial for the data given below. Plot the polynomial with the data.

$$
\left[\begin{array}{cccccccccc}
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 \\
4.2 & 2.2 & 2.0 & 8.7 & 5.7 & 9.9 & 0.44 & 4.8 & 0.13 & 6.4
\end{array}\right]
$$

Exercises, II

Exercises

7. An error bound for Newton interpolation with $n+1$ knots $\left\{x_{k}\right\}$ is

$$
|f(x)-N(x)| \leq \frac{1}{(n+1)!} \cdot \max \left|f^{(n+1)}(x)\right| \cdot \prod_{k=0}^{n}\left(x-x_{k}\right)
$$

Show this bound is less than or equal to the Lagrange interpolation error bound. How does this make sense in light of the unicity of interpolation polynomials? (NB: The formula for Newton interpolation also applies to Lagrange interpolation.)
8. Investigate interpolating Runge's "bell function" $r(x)=e^{-x^{2}}$ on the interval $[-5,5]$
a. with 10 equidistant knots,
b. with "Chebyshev knots" $x_{k}=5 \cos ((n-j) \pi / n)$ with $j=0 . .10$.
9. Write a Maple function that produces a difference tableau for a data set. Test your function with the data set produced by $>$ myData $:=[\operatorname{seq}([k, \operatorname{rand}(-9 . .9)()], k=1 . .10)]$;

Links and Others

Wikipedia entries:

- Lagrange Polynomial
- Bernstein Polynomials
- Newton Polynomial
- Wavelets

More information:

- Lagrange Interpolation
- Newton Interpolation
- Legendre Polynomial Calculator
- Chebyshev Polynomial Calculator

See also: Interpolation at MathWorld (Wolfram Research)
Investigate:

- Aitken Interpolation
- Extrapolation
- Gauss's Interpolation Formula
- Hermite Interpolation
- Newton-Cotes Formulas
- Thiele's Interpolation Formula
- Vandermonde Matrix
- The Maple command PolynomialInterpolation in the CurveFitting package
- MATLAB's fit command
- Splines and Bézier curves
- Rational Interpolation

S III. Case Study: TI Calculator Numerics

Sections

1. Introduction 163
2. Floating Point Structure 165
3. Numeric Derivatives 167
4. Numerically Finding Roots 168
5. Numeric Quadrature 169
6. Transcendental Functions 170
Appendix V:TI's Solving Algorithm 171
Exercises 172

S III. Case Study: TI Calculator Numerics

Introduction

Texas Instruments started a research project in 1965 to design a pocket calculator. The first pocket calculators appeared in the early 1970s from the Japanese companies Sanyo, Canon, and Sharp. The HP-35 (it had 35 keys) was the first scientific pocket calculator, introduced by Hewlett Packard in 1972 for $\$ 395$. In 1974, HP released the
 HP-65 (\$795), the first programmable pocket calculator.

Texas Instruments' TI-8x series is based on the Zilog Z-80 processor (1976), an 8 -bit CPU originally running at 2 MHz . The TI-81 came out in 1990 with a 2 MHz Z 80 and 2.4 KB RAM. The TI-84 Plus CE (released in 2015) has a 48 MHz Z80 with 4 MB Flash ROM and 256 KB RAM. In 2013, the calculators' displays upgraded to 320×240 pixels from the 1990's 96×64 pixels. ${ }^{1}$

[^8]
TI-80 Series Calculators

Timeline of the TI-80 Series

Model	Year	Z80 Processor	RAM KB / ROM MB
TI-81	1990	2 MHz	$2.4 / 0$
TI-82	1993	6 MHz	$28 / 0$
TI-83	1996	6 MHz	$32 / 0$
TI-83 Plus	1999	6 MHz	$32 / 0.5$
TI-83 Plus SE	2001	15 MHz	$128 / 2$
TI-84 Plus	2004	15 MHz	$128 / 1$
TI-84 Plus SE	2004	15 MHz	$128 / 2$
TI-84 Plus C	2013	15 MHz	$128 / 4$
TI-84 Plus CE	2015	48 MHz	$256 / 4$

TI-81

TI-82

TI-83

TI-83+

TI-83+SE

TI-84+

TI-84+SE

TI-84+CE

TI Floating Point

TI Floating Point Structure

TI's numeric model is not IEEE-754 compliant. The floating point format is

9 Bytes									
0	+1	+2	+3	+4	+5	+6	+7	+8	
s/T	EXP	DD							

s/T: Sign and Type Byte

8 Bits							
7	6	5	4	3	2	1	0
SIGN	reserved	TYPE					

Floating point types: Real: 0; Complex: 0Ch; (List: 01h; Matrix: 02h; etc.)
EXP: Power of 10 exponent coded in binary, biased by 80h
DD: Mantissa in BCD, 7 bytes of two digits per byte. While the mantissa has 14 digits, only 10 (+2 exponent digits) are displayed on the screen. (Many math routines use 9-byte mantissas internally to improve accuracy.)

Examples: $3.14159265=$| 00 | 80 | 31 | 41 | 59 | 26 | 50 | 00 | 00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline-230.45= & 80 & 82 & 23 & 04 & 50 & 00 & 00 & 00 \\
\hline
\end{array}
$$

TI Floating Point Software

TI Floating Point Software

There are six RAM locations called the Floating Point Registers OP1 to OP6; each is 11 bytes (with 9 byte mantissas); they are used extensively for floating point computations. The routines listed below, called in assembly programs, operate on the value in OP1 unless noted.
TI's operating system ${ }^{2}$ includes the functions:

Standard		Function	Transcendental	
FPAdd (OP1+OP2)	Ceiling	Sin	ASin	
FPSub (OP1-OP2)	Int	Cos	ACos	
FPRecip (1/OP1)	Trunc	Tan	ATan	
FPMult (OP1 \times OP2)	Frac	SinH	ASinH	
FPDiv (OP1 \div OP2)	Round	CosH	ACosH	
FPSquare (OP1 \times OP1)	RndGuard (to 10 d)	TanH	ATanH	
SqRoot	RnFx (to FIX)	LnX	EToX	
Factorial ($n \cdot 0.5 \geq-0.5)$	Random	LogX	TenX (10 OP1)	
Max(OP1, OP2)	RandInt			
Min(OP1, OP2)				

[^9]
Numeric Derivatives

nDeriv

TI uses a centered difference formula

$$
f^{\prime}(a) \approx \frac{f(a+\varepsilon)-f(a-\varepsilon)}{2 \varepsilon}
$$

The default step size is $\varepsilon=0.001$. The command can't be nested and doesn't check whether or not f is differentiable at a.

Syntax: nDeriv(expression, variable, value $[, \varepsilon]$)

(Screen images are from a TI-84+SE with the 2.55MP OS.)

Numerically Finding Roots

solve

TI uses a blend of the bisection and secant root-finding algorithms. (See Appendix V.) The default initial interval is $\left[-10^{99}, 10^{99}\right]$. Solve does not find roots of even multiplicity since the algorithm requires a sign change. (solve is available only through CATALOG or the Solver application.)
To find a different root, use a starting value close to the desired new solution; a graph is a good "initial value generator."

Syntax: solve(expression, variable, initial_guess)

Numeric Quadrature

fnInt

TI uses an adaptive Gauss-Kronrod 7-15 quadrature

$$
\int_{-1}^{1} f(x) d x \approx \sum_{k=1}^{15} f\left(x_{k}\right) \cdot w_{k} .
$$

The default error tolerance is $\varepsilon=10^{-5}$. The command can't be nested and doesn't check if f is integrable over $[a, b]$.

Syntax: fnInt (expression, variable, lower, upper $[, \varepsilon]$)

Transcendental and Other Functions

Numeric Function Calculations

- For trigonometric, logarithmic, and exponential functions, TI uses a modified CORDIC algorithm. CORDIC's standard "rotations" of 2^{-k} are replaced with 10^{-k}. (See the CORDIC Project.)
- The factorial x ! where x is a multiple of $\frac{1}{2}$ for $-\frac{1}{2} \leq x \leq 69$ is computed recursively using

$$
x!= \begin{cases}x \cdot(x-1)! & x>0 \\ 1 & x=0 \\ \sqrt{\pi} & x=-\frac{1}{2}\end{cases}
$$

Appendix V: Tl's Solving Algorithm

Bisection and Secant Combined

The solve function and the Solver application use a clever, modified combination of the secant method and bisection. ${ }^{3}$ The logic is:

1. Order the bracketing points a and b so that $|f(b)| \leq|f(a)|$.
2. Calculate a new point c using the secant method.
3. If c is:
a. outside the interval, replace c with the midpoint (bisection),
b. too close to an endpoint (within h), replace c with $c=b \pm h$, a specified minimum step in the interval.
4. The new bracketing points are $a \& c$ or $b \& c$, whichever pair has the sign change.
5. If the error tolerance is met or the number of iterations is maximum, then return c, otherwise, go to Step 1.
[^10]
Exercises, I

Problems

1. Enter $1+1 \mathrm{EE}^{-}$13. Now enter Ans - 1. Explain the result.
2. Enter $\pi-3.141592654$ on a TI-84 and a TI Nspire CAS. Explain the different results.
3. Explain the result of $\operatorname{nDeriv}(|x|, \mathrm{x}, 0)$.
4. Define Y 1 to be the function $f(x)=\frac{10^{-8}-(x-\pi / 2)^{2}}{10^{-16}+(x-\pi / 2)^{2}}$. Explain the results from using solve with an initial guess of:
a. 0
b. 1.5
5. Define f by $f(x)=\left|x-\frac{1}{3}\right|^{-8 / 9}$. Compare evaluating $\int_{-1}^{1} f(x) d x$ with
a. a TI-84+SE,
b. Maple.

Exercises, II

Problems

6. Using the Gamma function, we can define $x!=\Gamma(x+1)=\int_{0}^{\infty} z^{x} e^{-z} d z$. Compute (1/4)! using the Gamma function with a calculator and with Maple.
7. Investigate the integral $\int_{-1}^{1} \frac{\pi}{\pi-3 x^{39}} d x$ numerically and symbolically. First, graph the integrand.
8. Report on how the calculator computes points to draw a graph.
9. Compare graphs of $s(x)=\sqrt[3]{x}$ over the interval $-1 \leq x \leq 1$ from the calculator and from Maple. Explain the differences.
10. Explain the possible sources of error when the calculator computes

$$
\int_{0}^{1}\left(\frac{d}{d t}\left(T^{10}\right)_{T=X}\right) d X
$$

using nDeriv and fnInt.

Projects

VII. Projects

The Project List

- One Function for All 176
I. Control Structures
- A Bit Adder in Excel 177
- The Collatz Conjecture 178
- The CORDIC Algorithm 180
- The Cost of Computing a Determinant 184
II. Numerical Differentiation
- Space Shuttle Acceleration 185
III. Root-Finding
- Commissioner Loeb's Demise 187
- Roots of Wilkinson's "Perfidious Polynomial" 190
- Bernoulli's Method and Deflation 193
IV. Numerical Integration
- The Fourier Power Spectrum 196
V. Polynomial Interpolation
- Spline Fit to a Transition Curve 198

One Function for All

Project: One Function for All, the Normal Distribution

The mean and standard deviation for total SAT scores for 2021 are $\mu=1061$ (from Evidence-Based Reading $533+$ Math 528) and $\sigma=217$, respectively. ${ }^{1}$ Define the function

$$
F(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}} d t
$$

1. Estimate the derivative of $F(x)$ for student scores that are one standard deviation above the mean.
2. The minimum score for students scoring in the top 10% is found by solving $0.10=1-F(x)$. Use a root-finding method to find x.
3. Use a quadrature rule to evaluate F (1157) - Appalachian State University's mean SAT score for entering first-year students in 2021. ${ }^{2}$
4. Use an interpolating polynomial to approximate $F(x)$ for $x \in[1100,1500]$.
[^11]
A Bit Adder in Excel

Project: Adding Bits in Excel

1. Implement the one-bit adder in Excel using IF-THEN statements and AND, OR, and NOT functions.
2. Test your design with all 8 triples of 1 -bit values.
3. Make an eight-bit adder with carries.
4. Test your design with 10 random pairs of 8 -bit numbers.
5. Develop a mathematical model for

One-Bit Adder with Carry the cost of computing the sum of two eight-bit values.

The Collatz Conjecture Project

Lothar Collatz's Proposition

Lothar Collatz posed a problem in 1937 that is quite simple to state, but that still eludes proof. For any positive integer n, define the sequence

$$
a_{1}=n \quad \text { and } \quad a_{k+1}=\left\{\begin{array}{ll}
\frac{1}{2} a_{k} & \text { if } a_{k} \text { is even } \\
3 a_{k}+1 & \text { if } a_{k} \text { is odd }
\end{array} \text { for } k>1 .\right.
$$

Collatz conjectured the sequence would always reach 1 no matter the starting value $n \in \mathbb{N}$.

Conjecture (Collatz's $3 n+1$ Problem)

For every $n \in \mathbb{N}$, there is a $k \in \mathbb{N}$ such that the sequence above has $a_{k}=1$.

Currently...

The conjecture has been verified for all starting values up to $87 \cdot 2^{60} \approx 10^{20}$. Read "The $3 x+1$ Problem" by J. Lagarias (January 1, 2011 version) and check Eric Roosendaal's web site http://www.ericr.nl/wondrous/.

The Collatz Conjecture

Project

1. Write a program, Collatz, that determines the total stopping time of a starting value n. That is, given $a_{1}=n$, find the first k such that $a_{k}=1$. Define Collatz $(n)=k$.
2. Explain why $\operatorname{Collatz}\left(2^{m}\right)=m$.
3. Generate a point-plot of the sequence $[n, \operatorname{Collatz}(n)]$ for $n=1$ to 100,000 .
4. Use your graph to find the maximum value of $\operatorname{Collatz}(n)$ for n from 1 to 100,000.
5. Which initial value $n \leq 10^{6}$ produces the largest total stopping time? (Careful! For example, $\operatorname{Collatz}(159,487)=183$, but before $a_{183}=1$, this sequence hits $a_{67}=17,202,377,752$, a value that very much overflows an unsigned 32-bit integer.)
6. Report on the history of Collatz's conjecture.

Extra for Experts: Prove that $\operatorname{Collatz}\left(2^{m} n\right)=m+\operatorname{Collatz}(n)$.

The CORDIC Algorithm

Background

In 1959, Jack Volder designed a way to compute trigonometric functions very quickly, the CORDIC algorithm, ${ }^{3}$, while working on digitizing the navigation system of the B58 Hustler, the first Mach 2-capable supersonic bomber. During the '70s, John Walther extended CORDIC to compute exponentials, logs, and hyperbolic trigonometric functions. The algorithm became the standard for calculators (using BCD).

CORDIC Recurrence Equations

$$
\begin{aligned}
x_{k+1} & =x_{k}-2^{-k} m \delta_{k} y_{k} \\
y_{k+1} & =y_{k}+2^{-k} \delta_{k} x_{k} \\
z_{k+1} & =z_{k}-\delta_{k} \sigma_{k}
\end{aligned}
$$

where $m=1$ (trig), 0 (arith), or -1 (hypertrig), δ_{k} is ± 1, and σ_{k} is a scaling factor.

[^12]
The CORDIC Parameters

Parameter Choices

$m=1$	Rotation Mode $\delta_{k}=\operatorname{sgn}\left(z_{k}\right)\left(z_{k} \rightarrow 0\right)$	Vectoring Mode $\delta_{k}=-\operatorname{sgn}\left(y_{k}\right)\left(y_{k} \rightarrow 0\right)$
$m=0$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\langle K, 0, \theta\rangle$	
$\sigma_{k}=\tan ^{-1}\left(2^{-k}\right)$	$x_{n} \rightarrow \cos (\theta) ; y_{n} \rightarrow \sin (\theta)$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\langle x, y, 0\rangle$
$\sigma_{k}=2^{-k}$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\langle x, 0, z\rangle$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\langle x, y, 0\rangle$
$m=-1$	$y_{n} \rightarrow x \times z$	$z_{n} \rightarrow y / x$
$\sigma_{k}=\tanh ^{-1}\left(2^{-k}\right)$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\left\langle K^{\prime}, 0, \theta\right\rangle$	
$\left(\operatorname{some} \sigma_{k} r e p e a t e d\right)$	$\rightarrow \cosh (\theta) ; y_{n} \rightarrow \sinh (\theta)$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\langle x, y, 0\rangle$
$(k=4,13,40,121, \ldots)$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\left\langle K^{\prime}, 0, \theta\right\rangle$	$\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\langle w+1, w-1,0\rangle$
	$x_{n}+y_{n} \rightarrow e^{\theta}$	$z_{n} \rightarrow \frac{1}{2} \ln (w)$

$$
K=\prod_{j=0}^{n} \cos \left(\sigma_{k}\right), \quad K^{\prime}=\prod_{j=0}^{n} \cosh \left(\sigma_{k}\right)
$$

CORDIC in Maple

```
CORDIC Trigonometric Functions with Maple
```

```
CORDIC[Trig]:= proc(t)
```

CORDIC[Trig]:= proc(t)
local n, K, x, y, z, j, del;
local n, K, x, y, z, j, del;
n:=47;
n:=47;
K:= cos(arctan(1.0));
K:= cos(arctan(1.0));
for j to n-1 do
for j to n-1 do
K := K cos (arctan(2. -j))
K := K cos (arctan(2. -j))
end do;
end do;
(x[1], y[1], z[1]):= (K, 0, evalf(t));
(x[1], y[1], z[1]):= (K, 0, evalf(t));
for j to n+1 do
for j to n+1 do
del:=sign(z[j]);
del:=sign(z[j]);
if del=0 then del:=1 end if;
if del=0 then del:=1 end if;
x[j+1]:=x[j]-del y[j] 2. .j+1}\mathrm{ ;
x[j+1]:=x[j]-del y[j] 2. .j+1}\mathrm{ ;
y[j+1]:=y[j] +del }\textrm{x}[j]\cdot2.\mp@subsup{.}{}{-j+1}
y[j+1]:=y[j] +del }\textrm{x}[j]\cdot2.\mp@subsup{.}{}{-j+1}
z[j+1]:= z[j]-\operatorname{del}\cdot\operatorname{arctan}(2. -j+1);
z[j+1]:= z[j]-\operatorname{del}\cdot\operatorname{arctan}(2. -j+1);
end do;
end do;
return (fnormal([x[j],y[j],z[j]]));
return (fnormal([x[j],y[j],z[j]]));
end proc:

```
    end proc:
```


The CORDIC Project

Project

1. Modify the Maple program CORDIC[Trig] to compute $\arctan (\theta)$.
2. Write a Maple program CORDIC [HyperTrig] that computes hyperbolic trigonometric functions using CORDIC.
3. Write a Maple program CORDIC[Exp] that computes the exponential function using CORDIC.
4. Write a Maple program CORDIC[Ln] that computes the logarithmic function using CORDIC.
5. Report on the complex number basis of the CORDIC algorithm.
6. Create a presentation on the history of the CORDIC algorithm.

Extra for Experts:

Write a single program that computes all possible CORDIC outputs.

The Cost of Computing a Determinant

Project: The Computation Cost of a Determinant

1. a. Define a function in Maple that produces an arbitrary square matrix: > M:=n \rightarrow Matrix (n, n, symbol=a) :
b. Define a shortcut function det for determinant: > det:=A \rightarrow LinearAlgebra[Determinant] (A) :
c. Define a function for calculating the computation cost of a determinant, ignoring finding subscripts:
> Cost :=expr \rightarrow subs(subscripts = 0, codegen[cost] (expr)) :
d. Test your functions with:
$>A:=M(2):$
$>A, \operatorname{det}(A), \operatorname{Cost}(\operatorname{det}(A)) ;$
2. Write a loop that computes the cost of a 1×1 determinant up to a 10×10 determinant. (A 10×10 determinant can take nearly 20 minutes.)
3. Develop a mathematical model for the cost of computing a determinant in terms of its dimension n.

Space Shuttle Acceleration

Space Shuttle Acceleration: The Situation ${ }^{3}$

The Space Shuttle had three phases from ignition to achieving orbit. The first phase began by the shuttle lifting off the launch pad using solid rocket boosters (SRBs) to accelerate extremely quickly. At approximately two minutes, the SRBs were separated and fell back to Earth.
The second phase began with SRB separation and lasted approximately 6.5 minutes. The shuttle speed increased to $17,500 \mathrm{mph}$ - the speed needed to achieve orbit. (Note this speed is a good deal less than the Earth's escape velocity of $25,000 \mathrm{mph}$.) The third phase began at about 9 minutes when the fuel external tank was jettisoned and the shuttle entered orbit.
NASA's data (next pg) lists the time, altitude, and velocity for STS-121 from July 4, 2006.

Project.

1. Using different divided difference formulas, compute and graph the shuttle's acceleration. Compare the results from each method.
2. Determine the maximum acceleration and its time.
3. Approximate the acceleration when the shuttle entered orbit at 9 minutes.
4. Explain why the shuttle's velocity cannot be computed from Δ Altitude/ Δ time.
[^13]
Space Shuttle Acceleration, II

The Data

Time (s)	Altitude (m)	Velocity $(\mathrm{m} / \mathrm{s})$	Time (s)	Altitude (m)	Velocity $(\mathrm{m} / \mathrm{s})$
0	0	0	280	105,321	2651
20	1,244	139	300	107,449	2915
40	5,377	298	320	108,619	3203
60	11,617	433	340	108,942	3516
80	19,872	685	360	108,543	3860
100	31,412	1026	380	107,690	4216
120	44,726	1279	400	106,539	4630
140	57,396	1373	420	105,142	5092
160	67,893	1490	440	103,775	5612
180	77,485	1634	460	102,807	6184
200	85,662	1800	480	102,552	6760
220	92,481	1986	500	103,297	7327
240	98,004	2191	520	105,069	7581
260	102,301	2417			

Commissioner Loeb's Demise

The Situation ${ }^{4}$

Commissioner Loeb was murdered in his office. Dr. "Ducky" Mallard, NCIS coroner, measured the corpse's core temperature to be $90^{\circ} \mathrm{F}$ at $8: 00 \mathrm{pm}$. One hour later, the core temperature had fallen to $85^{\circ} \mathrm{F}$. Looking through the HVAC logs to determine the ambient temperature, Inspector Clouseau discovered that the air conditioner had failed at 4:00 pm ; the Commissioner's office was $68^{\circ} \mathrm{F}$ then. The log's strip chart shows Loeb's office temperature rising at $1^{\circ} \mathrm{F}$ per hour after the AC failure; at 8:00 pm, it was $72^{\circ} \mathrm{F}$.

Inspector Clouseau believes Snidely Whiplash murdered the Commissioner, but Whiplash claims he was being interviewed by Milo Bloom, staff reporter of the Bloom Beacon, at the time. Bloom's interview started at $6: 30 \mathrm{pm}$ and lasted until 7:15. Whiplash's lawyer, Horace Rumpole, believes he can prove Snidely's innocence.

[^14]
Commissioner Loeb's Demise

First Steps

1. The office temperature is $T_{\text {ambient }}=72+t$, where $t=0$ is $8: 00 \mathrm{pm}$.
2. Newton's Law of Cooling applied to the corpse's temperature gives

$$
\frac{d T}{d t}=-k\left(T-T_{\text {ambient }}\right)=-k(T-t-72) \text { with } T_{0}=90 .
$$

3. A little differential equation work (with an integrating factor) yields

$$
T(t)=\left[72+t-\frac{1}{k}\right]+e^{-k t} \cdot\left[18+\frac{1}{k}\right]
$$

4. To find k, use the other data point. Set $T(1)=85^{\circ} \mathrm{F}$, then solve for k.
5. Last, solve $T\left(t_{D}\right)=98.6$ for t_{D}, the time of death.

Commissioner Loeb's Demise

Project

1. Using the four methods, Bisection, Newton, Secant, and Regula Falsi:
a. Find the value of k using First Step 4.
b. Find t_{d}, the time of death of Commissioner Loeb, from First Step 5.
c. What was the temperature of the Commissioner's office at t_{D} ?
d. How does error in the value of k effect error in the computation of t_{D} ?
2. Compare the four methods and their results.
3. Graph $T(t)$ over the relevant time period.
4. Chief Inspector Charles LaRousse Dreyfus answers the press's questions:

- Is Inspector Clouseau right?
- Could Snidely Whiplash have killed Commissioner Loeb?
- Will Horace Rumpole get another client off?
- Will Milo Bloom win a Pulitzer?
- Will Bullwinkle finally pull a rabbit out of his hat?

Wilkinson's Perfidious Polynomial

In 1963, James Wilkinson created a polynomial to illustrate numerical difficulties in computing roots. ${ }^{5}$ His polynomial is:

$$
\begin{aligned}
W(x)= & x^{20} \\
& -210 x^{19} \\
& +20615 x^{18} \\
& -1256850 x^{17} \\
& +53327946 x^{16} \\
& -1672280820 x^{15} \\
& +40171771630 x^{14} \\
& -756111184500 x^{13} \\
& +11310276995381 x^{12} \\
& -135585182899530 x^{11} \\
& +1307535010540395 x^{10} \\
& -10142299865511450 x^{9} \\
& +63030812099294896 x^{8} \\
& -311333643161390640 x^{7} \\
& +1206647803780373360 x^{6} \\
& -3599979517947607200 x^{5} \\
& +8037811822645051776 x^{4} \\
& -12870931245150988800 x^{3} \\
& +13803759753640704000 x^{2} \\
& -8752948036761600000 x \\
& +2432902008176640000
\end{aligned}
$$

Wilkinson's Polynomial's Roots

Red box: root of $w(x)$
Blue circle: root of $w_{p}(x)=w(x)+10^{-23} x^{19}$

Wilkinson's Polynomial's Roots

The Project

1. Describe what happens when trying find the root at $x=20$ using Newton's method.
2. Describe what happens when trying find the root at $x=20$ using Halley's method.
3. Discover what happens when the constant term is perturbed, i.e., investigate the roots of $p(x)=w(x)+10^{6}$.
4. Discover what happens when the x^{1} term is perturbed, i.e., investigate the roots of $p(x)=w(x)+x$.

Bernoulli's Method for Polynomial Roots

Bernoulli's Method $(1728)^{6}$

Let $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial (wolog assuming p is monic) and let r be the root of p with the largest magnitude. If r is real and simple, define the sequence $\left\{x_{k}\right\}$ recursively by

$$
\begin{array}{ll}
x_{k}=-a_{n-1} x_{k-1}-a_{n-2} x_{k-2}-\cdots-a_{0} x_{k-n} & k=1,2, \ldots \\
x_{0}=1, \quad x_{-1}=x_{-2}=\cdots=x_{-n+1}=0 .
\end{array}
$$

Then

$$
\frac{x_{n+1}}{x_{n}} \rightarrow r
$$

- Bernoulli's method works best when p has simple roots and r is not "close" to p 's next largest root.
- "If the ratio does not tend to a limit, but oscillates, the root of greatest modulus is one of a pair of conjugate complex roots." (Whittaker \& Robinson, The Calculus of Observations, 1924.)

Deflation

Deflating a Polynomial

Let $p(x)$ be a polynomial. If a root r of p is known, then the deflated polynomial $q(x)$ is

$$
p_{1}(x)=\frac{p(x)}{x-r} .
$$

The coefficients of p_{1} are easy to find using synthetic division.

The Technique

1. Use Bernoulli's method to find r, the largest root of p
2. Deflate p to obtain p_{1}
3. Repeat to find all roots.

Problem: Since there is error in r 's computation, there is error in p_{1} 's coefficients. Error compounds quickly with each iteration.

The Bernoulli Project

The Project

1. Expand Wilkinson's "perfidious polynomial" into standard form

$$
W(x)=\prod_{k=1}^{20}(x-k)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

2. Use 50 iterations of Bernoulli's method to find the largest magnitude root. What is the relative error?
3. Determine $W_{1}(x)$, the deflated polynomial using the root from 2.
4. Use 50 iterations of Bernoulli's method to find the largest magnitude root of $W_{1}(x)$. What is the relative error?
5. Determine $W_{2}(x)$, the deflated polynomial using the root from 4.
6. Use 50 iterations of Bernoulli's method to find the largest magnitude root of $W_{2}(x)$. What is the relative error?
7. Discuss the propagation of error in the deflations.

The Fourier Power Spectrum

Calculating the Power Spectrum of a Signal

The Power Spectrum of a signal f gives the amount of power of a specific frequency component in the signal. The value at the frequency ω is given by

$$
P(\omega)=\sqrt{a_{\omega}^{2}(f)+b_{\omega}^{2}(f)}
$$

where $a_{\omega}(f)$ and $b_{\omega}(f)$ are the Fourier coefficients of f at the frequency ω. The Fourier coefficients a and b are computed with the integrals ($\omega \geq 1$)

$$
a_{\omega}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (\omega t) d t \quad \text { and } \quad b_{\omega}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (\omega t) d t
$$

Square Wave $S W(t)=|\sin (2 t)| / \sin (2 t)$

Spectrum Graph of SW

The Spectrum Plot shows the power level at each frequency.

The Fourier Power Spectrum, II

The Project: Produce a Spectrum Plot of the Square Wave

We will use numerical integration to compute the spectrum of the square wave

 $S W(t)=|\sin (3 t)| / \sin (3 t)$.1. Choose a method from: midpoint, trapezoid, Simpson's.
2. Use your method to numerically integrate $P(\omega)$ for $\omega=1 . .100$.
3. Use Maple to create a list, Spectrum, of lines $[[k, 0],[k, P(k)]]$ for $k=1 . .100$.
4. Graph the list with plot $[\{$ Spectrum $\}$, thickness $=3]$.
5. Change the numerical integration method to either Gauss quadrature or Gauss-Kronrod quadrature.
6. Recompute the power spectrum and its graph. Do the spectrum values change? Is it faster or slower?

Extra for Experts

1. Show that $a(k)=0$ for $k \geq 1$. (Hint: Integrals of even \& odd functions.)
2. Then conclude that $P(k)=|b(k)|$ for $k \geq 1$.
3. Last, demonstrate that $b(k)=0$ unless $k=3(\bmod 6) .{ }^{7}$
[^15]
Spline Fit to a Transition Curve

Transition Curves

A transition curve is a section of highway or railroad track used to go from a straight section into a curve. A transition curve is designed to prevent sudden changes in lateral acceleration, which would occur with a circular segment, by smoothly transitioning into and out of a curve. The basic transition curve parametric function $\mathscr{T}(t)$ uses the Fresnel sine and cosine integrals

$$
\mathrm{C}(t)=\int_{0}^{t} \cos \left(\frac{1}{2} \pi t^{2}\right) d t \quad \text { and } \quad \mathrm{S}(t)=\int_{0}^{t} \sin \left(\frac{1}{2} \pi t^{2}\right) d t
$$

to give $\mathscr{T}(t)=[\mathrm{C}(t), \mathrm{S}(t)]$. These integrals do not have elementary antiderivatives, and must be evaluated numerically.
A segment from the spiral \mathscr{T} forms a transition curve which will provide a smooth transition without a sudden change in lateral acceleration.
Graph C and S to see their respective behaviors.
This project will investigate using splines to lay out a roadbed.

Spline Fit to a Transition Curve, II

Spline Fitting a Transition Curve for a Roadbed

Two roads are perpendicular and need to be connected by a curve. We'll blend two transition curves to make the road. One curve will start at A and turn toward the north until B. The second transition curve will start at C and turn west meeting the first at B. The two curves' tangents match at B.
We will compute waypoints along the centerline using the two transition curves, then fit a cubic spline through the data-points to lay out the roadbed to
 make surveying and construction reasonable. Use the data table below to determine the cubic spline.

Transition Curve Coordinates

$A=(0.0,0.0)$	$(0.18,0.003)$	$(0.35,0.02)$
$(0.52,0.08)$	$B=(0.66,0.18)$	$(0.75,0.30)$
$(0.80,0.47)$	$(0.82,0.65)$	$C=(0.83,0.82)$

References

Selected References and Further Reading

- Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson, 2006
- Richard Burden, J. Douglas Faires, \& Annette Burden, Numerical Analysis, 10th ed, Cengage Learning, 2015
- Laurent Demanet, Introduction to Numerical Analysis, MIT OpenCourseWare, 2012
- Francis Hildebrand, Introduction to Numerical Analysis, 2nd ed, Dover Publications, 1987
- James P Howard, II, Computational Methods for Numerical Analysis with R, CRC Press, 2017
- Bookauthority's "100 Best Numerical Analysis Books of All Time"

References

Selected Websites

- Wikipedia's "Computational mathematics"
- Springer's "Encyclopedia of Mathematics" "Computational mathematics"
- Simplicable's "What is Computational Mathematics?"
- University of Waterloo's "Welcome to Computational Mathematics"
- Council on Undergraduate Research's "Computational Mathematics: An Opportunity for Undergraduate Research" (pdf download)
- Perform a Google Scholar search for computational mathematics
- Search on Amazon.com for computational mathematics textbooks

Whew. After all that, it's time to sit down. . .

[^0]: ${ }^{3}$ Is there a difference between not true and false? See, e.g., Intuitionistic Logic at the Stanford Encyclopedia of Philosophy.

[^1]: ${ }^{5}$ Currently computed as FLOP per cycle per core. Also see Moore's Law.

[^2]: ${ }^{1}$ See Fornberg, "Generation of Finite Difference Formulas on Arbitrarily Spaced Grids," Math of Comp 51 (184), pp 699-706.

[^3]: ${ }^{4}$ Also called Modified Regula Falsi, Double False Position, Regula Positionum, Secant Method, Rule of Two Errors, etc. My favourite name is Yíng bù zú: "Too much and not enough."

[^4]: ${ }^{5}$ For historical background and a nice development, see Scavo and Thoo, "On the Geometry of Halley's Method," Am. Math. Mo., Vol. 102, No. 5, pp. 417-426.

[^5]: ${ }^{1}$ Lindemann was the first to prove that π is transcendental.

[^6]: ${ }^{4}$ Kronrod, A. S. (1964.) "Integration with control of accuracy" (in Russian), Dokl. Akad. Nauk SSSR 154, 283-286.

[^7]: ${ }^{5}$ Kahaner, Moler, \& Nash, Numerical Methods and Software, Prentice-Hall, 1989.

[^8]: ${ }^{1}$ TI's Nspire calculators use an ARM processor.

[^9]: ${ }^{2}$ See TI-83 Plus Developer Guide (also covers the TI-84 series).

[^10]: ${ }^{3}$ "Solve() uses a combination of bisection and the secant method, as described in Shampine and Allen Numerical Computing: An Introduction, Saunders, 1973" (pp. 96-100 and 244) according to the TI 85 Knowledge Base.

[^11]: ${ }^{2}$ From the SAT Suite of Assessments Annual Report, The College Board.
 ${ }^{2}$ From the College Admission Scores website.

[^12]: ${ }^{2}$ Jack Volder, "The CORDIC Computing Technique," 1959 Proceedings of the Western Joint Computer Conference, pp. 257-261; and, —, "The Birth of CORDIC," J. VLSI Signal Proc. 25, 2000, pp. 101-105.

[^13]: ${ }^{3}$ Adapted from NASA's "Space Shuttle Ascent."

[^14]: ${ }^{4}$ Adapted from A Friendly Introduction to Numerical Analysis by Brian Bradie.

[^15]: ${ }^{7}$ Extended Project: Determine this condition for $S W_{n}(t)=|\sin (n t)| / \sin (n t)$.

